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Chapter 1

Introduction

Mathematical modelling plays a crucial role in all branches of science and en-
gineering, and electronics is no exception. The main aim of modelling in the
field of electronics is to accurately predict the behaviour of electronic circuits,
allowing a circuit to be evaluated without requiring its implementation. This
is an essential asset during the design phase of a circuit. The huge increase in
the complexity and quality of electronic systems over the past several decades
would therefore not have been possible without an equal advance in modelling
techniques. As improvements in semiconductor technology are the driving
force behind this development, considerable effort has been directed towards
improving the modelling of integrated circuits, in particular of the electronic
devices that form the elementary building blocks of these circuits: bipolar tran-
sistors and field-effect transistors. Because all circuit models are ultimately
composed of devicemodels, successful circuitmodelling requires, first and fore-
most, adequate models for these devices.

Many different approaches to device modelling have been reported in litera-
ture; the mathematical representation of device models ranges from stored ta-
bles of observational data to partial differential equations [1]. However, it will
be shown in Chapter 2 that not every device description can be conveniently
used in all stages of the circuit-design process. Particularly for the design of
high-quality analog electronic circuits, accurate analytical models for the avail-
able electronic devices have proved to be indispensable. The formulation of
an effective design theory for these circuits requires a combination of high ac-
curacy and relative simplicity of expression that only analytical device models
are capable of offering. Furthermore, only the high abstraction level of the an-
alytical model allows the full exploitation of the behavioural characteristics of
devices. This explains the continuing scientific effort that is directed towards
creating evermore sophisticated analytical models for all common device types.

Identification is a necessary step in themodelling of virtually any device. Model
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Introduction 2

identification implies that the values of the model parameters are extracted
from the observed device behaviour. In theory, the parameter values of an an-
alytical device model can be obtained by analysing the internal physical struc-
ture of the device [1]. In practice, however, such detailed information about
the device is seldom available, so that it is necessary to tap the only source of
information that is always accessible, namely the observable device behaviour.
Nevertheless, the extracted parameter values must be physically meaningful.

The sequential method is the classical approach to the identification of analyt-
ical models [2–5]. A typical sequential identification method divides the model
up into a sequence of sub-models by a process of approximation, so that each
sub-model contains only a small number of unknown parameters, preferably
just one. Each sub-model in the sequence is then identified using only a small
portion of the observational data, which is taken from the limited part of the
device’s operating range where the simplified model is supposed to be accu-
rate. The values of the thus extracted parameters can be used in the definition
and identification of subsequent sub-models. The sub-models can usually be
chosen in such a manner that when the observations are plotted on a suitable
(often non-linear) scale, their parameters can be read directly from the graph, or
can be found by using simple graphical techniques. In this way, the sequential
method replaces a single large and hence complicated identification problem by
a sequence of smaller identification problems for approximate models that can
be solved by hand. Therefore, the main advantage of the sequential method is
that it does not require a large computational effort.

Nevertheless, the sequential method also has a number of disadvantages. First
of all, the method can only be applied to models that lend themselves to this
type of decomposition. Many of the complex and extended transistor models
in use today cannot easily be handled by the sequential method. Secondly, a
sequential identification procedure is tailored to a particular model, and a con-
siderable amount of work is required when models are changed or improved.
Further, the approximations that are required to bring the model in a tractable
form also result in approximate parameter values, which may not be accurate
enough for circuit-design purposes.

Since the advent of the computer, more computation-intensive identification
methods have risen to prominence in the field of device modelling. The basic
approach of these methods is usually the same: a fitting criterion that expresses
the distance between the theoretical model curve and the actual observations
is minimized by simultaneously adjusting the values of all unknown model pa-
rameters [6–11]. As a group these methods are therefore referred to as data-
fitting methods1. They result in an optimum set of model parameters. The
data-fitting approach offers significant practical advantages over the sequential

1They are also known as curve fitting or non-linear regression.
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method. For one, it is far more flexible because the identification procedure—
more specifically, the fitting criterion and the minimization method—is now
completely model independent. Hence, data fitting is ideally suited to fully
automated identification, a highly desirable feature in this age of CAD/CAM.
However, data-fitting methods have not succeeded in replacing the sequential
methods in all areas of application. Although generally accepted as a useful
tool, as is demonstrated by the large number of commercial software packages
based on data fitting [12], the data-fitting approach has the reputation of being
less reliable than its predecessor. The complaint most often heard is that the
optimum parameter values are not physically meaningful.

In Chapter 3 of this thesis, a detailed analysis will show that the reliability of
an identification method is intimately linked to the validity of the model. Al-
though analytical models have a physical foundation, they can at best approx-
imate the physical reality. As a result, the extent of the validity domain of an
analytical model will always be limited. Therefore,

model identification must imply the extraction of the model pa-
rameters and the model validity domain from the observed device
behaviour.

Conventional data-fitting techniques, such as the least-squares method [13],
take the validity of the model over the whole operating range of the device for
granted. Consequently, their optimum parameters are meaningless whenever
this assumption is not justified. Nevertheless, virtually all model-identification
programs that are available to date use some form of the least-squares method.

The sequentialmethod is potentiallymore robust than the least-squaresmethod
because it provides a way to identify the validity domain of a model. Since
the sub-models only depend on a few parameters, they can generally be trans-
formed into a linear model by applying a suitable non-linear transformation.
When plotted on the associated non-linear scale, the observational data will
then show a linear relationship in the region where the model is valid. A lin-
ear relationship is preferred because it can easily be recognized in the graphical
representation of the data. Hence, it is possible to determine the validity do-
main of the sub-models by inspection. This information can then be used to
select the observations that subsequently determine the parameter values.

The main objective of the research presented in this thesis has been to develop
a method for the identification of analytical device models that combines the
flexibility of a data-fitting method with the reliability of a sequential method.
We are of the opinion that data fitting is indeed the answer to the problem
of model identification, as only the data-fitting approach provides a consistent
mathematical framework for analysing the relation between the observational
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data and the model parameters. While there is presently a lot of activity in this
field, it is mainly concerned with the fine tuning of minimization algorithms in
order to increase the efficiency of the standard data-fitting methods. We will
find, however, that it is necessary to critically re-examine the motives behind
the choice of the fitting criterion to significantly improve the reliability of the
data-fitting approach. This research enables us to propose a new data-fitting
method for the identification of analytical device models—called mode selection,
or MODES for short—that takes into account the limited validity domain of
these models. Whereas other data-fitting methods maximize the accuracy of
the model over the complete set of observations, MODES aims to satisfy a
pre-defined accuracy requirement over the validity domain of the model. This
accuracy requirement (or validity criterion) is determined by the application of
the model.

The broad subject of algorithm design is covered in Chapter 4. The implemen-
tation of MODES described in this chapter concurs to a large extent with the
one that can be found in the general-purpose parameter extraction program
called ParX (PARameter eXtractor)—which is the ultimate practical result of
the research presented in this thesis. However, as this thesis is not intended
as a user’s guide to this specific implementation, we prefer not to clutter the
discussion with implementation-specific details. Instead we will focus on the
underlying principles in order to provide the necessary insight into the algo-
rithm. It was decided at the outset that the reliability of the identification
method should be the dominant criterion for assessing the implementation.
We feel that in traditional implementations of data-fitting methods the trade-
off between reliability and efficiency has been too much in favour of the lat-
ter. We aim to redress this imbalance by reappraising some standard minimiza-
tion algorithms. The effectiveness of our implementation of MODES will be
demonstrated and discussed in Chapters 5 and 6.

Finally, although the discussion in this thesis is dedicated to the identification
of electronic-device models, it is not in any way limited to it. The principles
involved can easily be translated to other branches of science and engineering.
Empirical science as a whole is mostly concerned with the search for analytical
models of reality (in physics these are sometimes called laws of nature). Hence,
the identification method developed in this thesis has a much wider field of
application.



Chapter 2

DeviceModelling

The principal function of any device model is to encode our knowledge of a
device and to represent it in a useful form. Besides the level of abstraction of
the mathematical representation, it will therefore be the source and the extent
of this knowledge that determine the potential use of a model. This insight
allows for a classification of the bewildering variety of model representations
that are in practical use in the field of electronics into two main groups: the
behavioural models and the structural models. These two groups differ mainly
in the way in which they make use of the two available sources of knowledge:

1. the a priori knowledge, which for electronic devices consists of a descrip-
tion of their internal physical structure, and

2. the a posteriori knowledge in the form of the observed behaviour of a par-
ticular device.

The implications of the source of the knowledge for the representation and
interpretation of the device models will be discussed first.

Next, the different model representations are examined with respect to our
modelling goal: the design of analog electronic circuits. Although any single
representation is necessarily a compromise, the result of this examination will
be unequivocal: only analytical device models are able to satisfy all constraints
posed by this application. However, for the interpretation of the results of this
modelling methodology to be valid, new methods for the identification and
validation of analytical device models will have to be developed.

5



Mathematical modelling 6

2.1 Mathematical modelling

The relationship between a “real world” device and its model is established by
an abstraction process. In this process, only those aspects of the device that
are essential to the modelling goal are retained and represented by the model.
This representation will be in a mathematical form, since mathematics is the
natural language for the expression of abstraction. Mathematical modelling
can thus be defined as reducing the relevant physical properties of a device to
a mathematical formulation that can be used in a convenient way.

The definition ofmathematical modelling does not suggest by itself amodelling
methodology. We will therefore introduce the modelling methodology that is
generally accepted as the foundation of empirical science [14], and which is fully
compatible with the modelling goal pursued in this thesis. This methodology
interprets the construction of a model as the formulation of a hypothesis. This
hypothesis is then validated (or corroborated) by experiments, which in the case
of a device implies observing the device behaviour. The fact that validation is
only concernedwith the observable behaviour of a devicemeans that only those
physical properties of the device that directly affect its external behaviour are
accepted as relevant. This observation yields the following modelling criterion:

A device model is considered to be a valid representation of a device when
the observed behaviour of the device and the behaviour predicted by the
model are identical.

However, in practice the term “identical” in the criterion will have to be qual-
ified by specifying the required accuracy of the model. The required model
quality varies as it depends on the modelling goal. Although compliance with
this criterion is a minimum requirement for any model, it may not be a suffi-
cient requirement for all models. However, it should be clear that any other
criterion would have to rely on a priori knowledge about the device.

The fact that validation is an essential part of the modelling methodology de-
termines the type of mathematical formalism that can be used for the construc-
tion of a model. In this process of linking the mathematical formalism to the
device behaviour one can distinguish several related but distinct phases.

The initial phase in the construction of a model consists of the introduction of
an interface through which the device interacts with its environment. The in-
terface is defined as a set of variables that are chosen as representatives of phys-
ical device quantities that take on observable or even controllable values. The
physical interpretation of these interface variables determines the behavioural
domain of the model.
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To describe the behaviour of a device, it is customary to differentiate between
independent and dependent interface variables, as seen from the device side of
the interface. However, this separation between independent and dependent
variables is not always very strict and is often just a matter of convention or
convenience. When the independent interface variables of a device are given a
value by the environment, its dependent interface variables will take on definite
values. This means that a device, as a result of its internal physical structure,
imposes constraints on the values of the interface variables, or in mathematical
terms, defines a functional relationship between the interface variables. Find-
ing a suitable mathematical representation for this functional relationship is
the fundamental phase in the construction of a model. It is often expedient to
consider these mathematical representations as being composed of a structure
and a set of parameters. The model structure describes the form of the rep-
resentation, usually by specifying some class of mathematical equations, while
the model parameters are then the unspecified coefficients in these equations.
These model parameters are also called “structural” parameters to stress the
fact that they are associated with a specific model structure.

Finally, in practice it is not possible to totally encompass such a complex phys-
ical phenomenon as a device by a mathematical description. Any device model
will only be acceptable within a limited domain. This domain of validity of the
model should always be determined.

The construction of a device model thus consists of four phases:

1. defining the model interface, i.e. the behavioural domain,

2. determining a suitable model structure,

3. determining the values of the model parameters, and

4. determining the domain of validity of the model.

The realization of the various stages depends on the modelling goal, which not
only determines the relevant behavioural domains but also the interpretation
of the resulting models.

2.2 Model representations

A model should at least fulfil the requirement of reproducing the actual be-
haviour of a device with sufficient accuracy over the relevant operating region.
As this behaviour can be observed, it is possible to devisemodel representations
that only use this source of knowledge about a device. These behavioural mod-
els describe a device as if it were a “black box” without any internal structure.
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However, for most practical devices the black-box approach is not realistic as
there exists a considerable body of knowledge concerning the mechanism of
their internal workings. This knowledge, which is based on device physics, can
be incorporated in the model, linking the physical structure of the device and
the mathematical structure of the model representation. Both the behavioural
and the structural models can be represented at several levels of abstraction.

2.2.1 Behavioural models

Observing the behaviour of a device implies the determination of the values
of the dependent interface variables for discrete values of the independent in-
terface variables. The discrete nature of the observed data has, through the
number and distribution of the observations, a significant influence on the rep-
resentation and specification of the models that are solely derived from this
source of information.

Data-interpolationmodels

This model representation makes direct use of the observations by storing the
discrete values of the independent variables and the accompanying values of
the dependent variables in a multi-dimensional table [15, 16]. This table is then
used to estimate the device behaviour for intermediate points by incorporating
some appropriate interpolation scheme. Thus, for accurate modelling a large
table and an equally large set of observations are needed.

The structure of themodel representation is implicitly determined by the choice
of the interpolation scheme. This structure could be described in the form of
an interpolating function that passes through all the observations. The coef-
ficients of this interpolation function are directly and uniquely determined by
the observations. The observations can thus be interpreted as the parameters
of the representation.

Data-fittingmodels

The data-interpolationmodels will exactly reproduce all the observations. How-
ever, the large number of parameters required for the representation of these
models suggests the possibility of reducing the number of parameters by aban-
doning this constraint. This abstraction yields the data-fitting method which
condenses the observed data by fitting it to a model that depends on a relatively
small set of parameters.
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The structure of these models is usually expressed in the form of an analytical
function. However, without any a priori knowledge about the device it is ad-
visable to choose a class of functions that is universal enough to approximate
the behaviour of any device type, e.g. polynomial, spline or piecewise-linear
functions [17, 18].

The values of the model parameters are determined by minimizing the dif-
ference between the observed behaviour and the behaviour predicted by the
model. In general, this minimum difference will not be zero. Therefore, a
measure of the above difference is needed, the so-called fitting criterion. This
criterion determines the final distribution of the limited accuracy of the model
over the domain space (i.e. the range of the independent variables). The re-
sulting “best-fit” parameter values are now no longer uniquely determined by
the observations, but also depend on the choice of the fitting criterion. As a
consequence, the fitting criterion should be regarded as an inherent part of the
model hypothesis.

2.2.2 Structural models

The incorporation of a priori knowledge, which for an electronic device comes
from the domain of solid-state physics, means a departure from the behavioural
black-box approach, as the internal structure of the device is now taken into
consideration. The level of detail with which the internal structure of the de-
vice has to be described depends on the abstraction level of the model.

Physical models

At this level of abstraction a device is described by specifying how it is con-
structed. Therefore, a physical model relies completely on a priori knowledge
about the device. The behaviour of the device can be deduced from this knowl-
edge [19, 20].

The structure of the model consists of a set of partial differential equations
(i.e. the Poisson and current-continuity equations) that model the basic phys-
ical processes of solid-state devices. The form of these basic equations is not
device specific and can be used for a variety of device types. The model is
made device specific by specifying the doping profile of the semiconductor de-
vice, together with appropriate boundary conditions associated with the device
geometry and the external device contacts. These design parameters represent
the physical quantities that form a description of the internal structure of the
device. The basic equations can then be solved, usually with the aid of a suit-
able numerical method, not only yielding the behaviour of the device, but also
providing insight into the physical processes taking place within the device.
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The validity of a physical model depends on the validity of the a priori knowl-
edge. This knowledge is stratified in accuracy as well as in generality, as even
the most well-established laws of solid-state physics are but models with a do-
main of validity that is limited.

Analytical models

The physical models require a full and detailed description of the internal struc-
ture of a device. However, since only a small number of specific structures are
actually used for the construction of practical devices, the internal structure of
a device will be largely determined by the device type. This insight allows for a
more abstract description whereby the internal structure of a device of a given
type can be completely specified by a limited number of primary parameters.
Under these restricting conditions it may be possible to solve the basic equa-
tions of the physical model and obtain an analytical expression for the device
behaviour [2, 21]. This approach has resulted in various analytical models for
most device types and behavioural domains, some more accurate than others
depending on the simplifying assumptions that were made in their derivation.

The structure of an analytical model consists of a set of functional relationships
between the interface variables. The mathematical form of these functional
relationships is entirely determined by the device type, i.e. a priori knowledge.
The functional relationships will depend on a number of structural parameters,
which are derived from the primary device parameters. Therefore, the param-
eters of an analytical model represent those behavioural qualities of a device
that are device specific. Since the primary parameters represent physical quan-
tities, it is often admissible to assign a physical significance to the structural
parameters as well. However, the validity of any interpretation of the param-
eters or the structure of the model depends on the validity of the premises of
their derivation.

2.3 Themodelling goal

In this section, the adequacy of the different model representations will be
assessed with respect to the modelling goal. For this purpose, the modelling
goal must be elaborated by taking a closer look at the circuit design process
and the role of the device models in this process.

Circuit design can be defined as the process of achieving a circuit implemen-
tation that satisfies a given design specification [1]. This specification includes
the signal-processing function that the circuit must perform and the quality
aspects that have to be considered. An acceptable, preferably optimum, cir-
cuit implementationmust be selected from all possible circuit implementations
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that together form the design space. The extent of the design space is usually
formidable, even when restricted by a large number of technological and phys-
ical constraints. Therefore, a design strategy is required to search the design
space effectively. Such design strategies have been developed for many of the
basic analog functions: amplifiers, oscillators, filters, etc [22–25]. The level of
sophistication of these strategies varies from simple heuristic procedures to
systematic algorithms. Although these strategies are thus different in nature,
the image of a design strategy as a search strategy in the design space is in-
strumental in describing a set of design steps that all design strategies have in
common.

2.3.1 Circuit design steps

A design strategy traverses and partitions the design space by a sequence of
design steps. The objective of this sequence of design steps is a fully specified
circuit—the topology as well as the devices—that satisfies the design speci-
fications in the best possible way within the constraints of the design space.
In other words, if all possible circuit implementations within the design space
are assigned a quality measure that expresses their compliance with the design
specifications, the goal of the design strategy is to find the point (circuit imple-
mentation) in the design space that has the best quality, i.e. the global optimum.
When circuit design is interpreted as a (global) optimization process, the de-
sign steps can be seen to fall in three distinct categories: circuit analysis, circuit
optimization and circuit synthesis. This subdivision is based on topological cri-
teria: whether the design step involves a single point in the design space, a local
region of the design space, or the design space as a whole.

Circuit analysis concerns the determination of the performance of a fully speci-
fied circuit, i.e. a single point in the design space, which implies the determina-
tion of the behaviour of the circuit in response to specified stimuli. The quality
of the circuit can then be evaluated with respect to the design specifications

Circuit optimization starts from an initial circuit which is analysed to deter-
mine the deviation from the desired performance. This deviation is then re-
duced by an optimization procedure which involves an iterative cycle consist-
ing of successive stages of circuit analysis, evaluation of the results, and circuit
modifications based on the observed deviations from the desired performance.
This cycle is repeated until the circuit satisfies the design specifications within
given tolerances, or until no further improvement is obtained. The optimiza-
tion process may intervene in the circuit design by modifying the topology of
the circuit in a systematic way or by selecting a different device. These degrees
of freedom in the circuit design are represented by a number of design vari-
ables which may be of a continuous or discrete nature. Since the initial circuit
is only modified by changing a necessarily limited number of design variables,
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optimization only traverses a small portion of the design space. Therefore, the
resulting optimum circuit implementation will, in general, be only a local opti-
mum.

Circuit synthesis refers to a systematic procedure which partitions the design
space, with the objective of closing in on that section of the design space that
contains the global optimum. If the final subsection of the design space only
contains a single circuit implementation, this circuit is accepted as being opti-
mum by construction, and its quality can be assessed by means of circuit sim-
ulation. If the final subsection is less restrictive, circuit optimization can be
used to search the remaining design space. However, for this optimization to
be successful, the final subsection should not contain any local optima besides
the global optimum.

There is a marked difference between the abstraction levels of the two con-
structive design steps: circuit optimization and circuit synthesis. Circuit opti-
mization always operates on a fully specified circuit, thus only using informa-
tion that is specific to a single point in the design space or its local environment.
This information is then used to induce the location of the optimum circuit.
However, circuit synthesis is based on design theory which uses information
that is necessarily global in nature as it is used to partition the whole design
space without considering each circuit implementation in this space individu-
ally. This means that synthesis must operate on a higher abstraction level by its
ability of excluding whole sets of circuit implementations on grounds that are
set specific. Circuit synthesis thus deduces the location of the optimum circuit
from a general design theory.

2.3.2 Device design

An important aspect of circuit design, which affects the choice of the model
representation, is the level of intervention in the internal structure of the device
that is possible, i.e. the degrees of freedom the designer has when choosing a
device. In the case of discrete devices, the only degree of freedom is the choice
of a particular device from a list of available devices. However, when designing
an integrated circuit it may be possible to actually design the devices by spec-
ifying their design parameters [26, 27]. Yet in practice, device design is always
limited by technological constraints and the level of intervention in the inter-
nal structure of a device usually goes no further than the specification of the
device type and its geometry. But even this limited amount of freedom in de-
vice design results in a virtually unlimited number of potential devices, each of
which must be modelled separately. This problem can be avoided by introduc-
ing a classification system, which reduces the number of distinct devices and
accompanying models to manageable proportions. These device classes can be
interpreted as differentiated device types. A particular device implementation
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can then be selected by choosing its class and assigning a value to a limited num-
ber of design parameters that express the remaining degrees of design freedom
(e.g. the scaling factors of a specified device geometry or other primary device
parameters). The concept of the device model can then be extended to ap-
ply to a class of devices by incorporating the design parameters in the model
representation.

2.3.3 Models for circuit design

Since electronic devices are the circuit primitives, device models play an impor-
tant role in the circuit design process. To assess the adequacy of the different
model representations that were discussed in Section 2.2 for this particular ap-
plication, the requirements of each design step with respect to the validity,
accuracy, generality and physicality of the model will be investigated.

Models for circuit analysis

The first requirement for performing circuit analysis is the definition of ade-
quate models for the circuit primitives. The design specification determines
the relevant behavioural domains and thus the interface through which a de-
vice interacts with its environment. As circuit analysis always deals with cir-
cuits that are completely specified, the environment of each device is known.
Therefore, the only requirement that a model should fulfil is to reproduce the
actual behaviour of the device with sufficient accuracy over the relevant oper-
ating region. Since this is a minimum requirement for any model, all model
representations are, in principle, usable. Hence, the representation should be
selected that is the most suitable for the specific analysis method.

The behavioural models have the advantage that their model structure can be
adapted to the requirements of the analysis method. However, when the de-
sign specifications include multiple behavioural domains, a separate model is
needed for each behavioural domain. These behavioural models are unrelated,
although they all refer to the same physical device. The hidden physical re-
lations between the different behavioural domains are thereby easily violated,
which may jeopardize the accuracy of the final result of the circuit analysis in
an unexpected way.

The representation of the physical model is in a form that is only amenable to
the analysis of a single device. Its application is better reserved for those oc-
casions where the detailed information it supplies about the internal operation
of the device is essential.

The analytical model, however, is suitable for circuit analysis. Although its
model structure is in general more complex than that of a behavioural model,
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it has the advantage that the analytical models for the different behavioural
domains are all derived from a single physical device structure. The physical
relations between the different behavioural domains are thus included in the
model structures.

Apart from their representations, the behavioural and structural models should
also be compared with regard to their domains of validity. While the validity
domain of a behavioural model can always be extended by simply enlarging the
number of observations, the validity domain of a structural model is always
limited by its physical nature. The domain of validity of a structural model can
only be extented by refining the a priori knowledge about the internal structure
of the device, or by refining the derivation of the model from this knowledge.
For the analysis of arbitrary circuits, the behavioural models may therefore be
the only choice. However, for analysis in the context of circuit design, the
limited domain of validity of the structural models is usually not a problem.

Models for circuit optimization

Circuit optimization is based on the repeated analysis of the circuit. Hence, any
model representation to be judged adequate for optimization should first of all
satisfy the requirements of circuit analysis. If these requirements also suffice
for circuit optimization depends on the degrees of freedom that are available in
the design of the circuit. Only when these degrees of freedom include device
design does optimization influence the choice of the device models. In this
case the model representations must be extended by incorporating the design
parameters.

For all behavioural model representations, this incorporation of the design pa-
rameters proceeds by treating them as if they were independent interface vari-
ables. The complexity and the extent of a behavioural model depends directly
on the dimensionality of the model interface. Especially when multiple be-
havioural domains are involved, the number of interface variables may become
so large that the complexity and the extent of the model exceeds practical lim-
its, making the behavioural models unsuitable for circuit analysis. However,
it should be noted that these limitations of the behavioural models are of a
practical and not of a theoretical nature.

The structural models already contain the design parameters, the physical mod-
els even in explicit form. The analytical models comprise the design parame-
ters in the form of their primary parameters. Hence, it suffices to introduce
these design parameters in the model representation in the form of structural
parameters. The complexity of a structural model is thus unaffected by the in-
corporation of the design parameters. However, there remains the problem of
the validity domain of the structural models, the bounds of which also depend
on the design parameters.
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Models for circuit synthesis

Circuit synthesis depends critically on the formulation of a design theory that
can be used to partition the design space. In general, a design theory is based
on the analysis of several classes of circuits. Since only the general form of the
circuits in a class is known, this analysis must be carried out at a necessarily high
level of abstraction. For the representation of the individual devices, the im-
plications of this higher level of abstraction are twofold, as neither the devices
themselves are completely specified nor their circuit environments. The level
of abstraction of the representation of these “generic” devices should match
the analysis method. In other words, the structure of the model representa-
tion must be analytically tractable.

The data-fitting models and the analytical models are the only device descrip-
tions that attain the required level of abstraction. Their representation is ex-
pressed in a closed analytic form that allows the standard mathematical opera-
tions andmanipulations to be carried out in theoretical studies. In particular, it
leads to the possibility of deriving explicit closed-form expressions for the per-
formance of the circuit class. Different circuit classes can then be compared on
the basis of these expressions with respect to the design specifications. At the
device level, the expressions can be used to derive design criteria that express
the influence of the behaviour of a generic device on the overall performance
of the circuit. These design criteria, which still contain the unspecified model
parameters and interface variables, can be used for selecting or designing the
optimum devices and their environments. However, there are some subtle dis-
tinctions between the design criteria that are derived using a behavioural device
model and those that are derived using a structural device model, which need
elaboration.

A design criterion implements a specific measure for comparing devices with
respect to their behavioural characteristics. For this comparison to be mean-
ingful, two conditions must be satisfied:

1. A single model structure must be used for the formulation of the design
criterion and the modelling of the devices.

2. The values of the model parameters must be uniquely determined by the
device behaviour and vice versa, i.e. there must exist a one-to-one rela-
tionship between them.

The parameters of a data-fitting model are chosen to optimize some global ac-
curacy criterion over a limited data set. Even when the fitted model repro-
duces these observations exactly, it still only reproduces the observed device be-
haviour. The parameters of a data-fitting model are purely empirical, and usu-
ally depend on the number, range and distribution of the observations. Hence,
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it is often difficult to ascertain the reliability of a design criterion that is based
on data-fitting models.

The structural parameters of an analytical model are derived from the primary
parameters of the device. Since these primary parameters represent physical
qualities, which are necessarily unique, the structural parameters must also be
unique. However, an analytical model only reproduces the behaviour of the
device within its validity domain, so the validity domain of the model also de-
termines the validity domain of the design criterion. A violation of this domain
suggests the need for selecting a different device, redesigning the circuit, or de-
riving a design criterion using a more complex analytical device model.

2.3.4 Selecting themodel representation

Summarizing the preceding discussion, we conclude that for the design of ana-
log electronic circuits the analytical model is the preferred device description.
In practice, however, the ideal of an analytical model for every device is diffi-
cult to attain. The a priori knowledge about the device, fromwhich an analytical
model can be constructed, may not always be readily available. A lack of a priori
knowledge can affect every stage of the modelling process.

A fully specifiedmodel structure is a prerequisite for the formulation of any de-
sign criterion. For most types of devices that are in general use (e.g. resistors,
capacitors, diodes, bipolar transistors and field-effect transistors) enough a pri-
ori information is available to deduce the structure of an analytical model with
a sizable domain of validity. However, if no reliable a priori knowledge about a
class of devices can be obtained, a data-fitting model is the only viable alterna-
tive to an analyticalmodel, as no othermodel representation is usable for circuit
synthesis. A data-fitting model is also used when a structural model needs to
be extended beyond its validity domain and no additional a priori knowledge is
available. Traditionally, many device models belong to this category of regional-
structural models. There is, however, an ongoing scientific effort to shift the
boundary between the analytical region and the empirical region of these hy-
brid models in favour of the former. Nevertheless, the data-fitting model will
never be completely excluded from the modelling exercise, and thus deserves
some attention besides the analytical model.

The model structure is embedded in the design criterion. Consequently, the
application of the design criterion requires the specification of proper values
for the structural parameters and the validity domains of the given model for
the individual devices.

The values of the structural parameters of an analytical device model are de-
duced from the primary device parameters, and thus depend on device-specific
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a priori knowledge. The values of the primary device parameters that cannot
be determined by direct observation are often unreliable or unknown. These
device parameters can thus only be determined by indirect methods, i.e. by in-
vestigating their influence on the a posteriori knowledge: the observed device
behaviour. In that way, the values of the unknown structural parameters are
induced from the device behaviour.

The validity domain of an analytical device model depends on the validity of
the a priori knowledge that was used in its construction, and is therefore de-
vice specific. An objective assessment of these basic assumptions may not be
possible. However, checking the consequences of these assumptions, validates
the a priori knowledge and consequently the model. This means that the valid-
ity domain of an analytical device model can also be induced from the device
behaviour.

From this examination it can be inferred that when sufficient device-specific a
priori knowledge cannot be obtained, as is usually the case, the utilization of the
analytical models is made possible only by the fact that the observed behaviour
of the device can be used instead. A method for extracting the parameters
and the validity domain of an analytical model from the observed behaviour is
therefore indispensable for reaching our modelling goal. The development of
such an identification method will be the subject of the following chapters.



Chapter 3

Identification andValidation

In the previous chapter we encountered the problem of model identification,
that is, the problem of determining the values of the model parameters on the
basis of the observed device behaviour. To solve this problem we must study
the connection between the device behaviour and the model specification in
detail. This connection is established by the modelling criterion that was given
in Section 2.1. The interpretation of the modelling criterion depends on the
modelling goal and on an associated quantification of the concept of model
validity, thereby introducing the question of model validation in the model-
identification problem. The formulation of a validity criterion is therefore a
prerequisite for the development of any identification method. It follows from
the modelling criterion that this validity criterion should also be based on the
observed device behaviour.

In the present chapter, the principles of the identification and the validation
of device models are introduced. For this purpose, a topological approach to
model validity and model identification will be presented. This topological ap-
proach will be used to study and compare the properties of the identification
methods that are discussed in the subsequent sections.

All identification methods considered in this chapter are based on data-fitting
techniques. The model parameters are determined by optimizing a fitting cri-
terion that expresses the difference between the observed device behaviour and
the device behaviour predicted by the model. The choice of the fitting crite-
rion is based (often implicitly) on assumptions about the characteristics of the
model and the characteristics of the observation errors. Hence, the acceptabil-
ity of an identification method depends on how realistic these assumptions are
when applied to practical identification problems. It will be demonstrated that
conventional identification methods, which are usually based on the standard
least-squares criterion, often fail to correctly identify analytical device models.
We will therefore introduce a new identification method, called mode selection,

18
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Figure 3.1: The observable system.

which uses an identification criterion that is defined in accordance with the
modelling goal that was expressed in Chapter 2. This method not only deter-
mines reliable values for the model parameters, but also supplies an estimate of
the model validity domain.

3.1 Basic concepts

An identification method is characterized by three elements: the observed de-
vice behaviour, the set of device models, and an identification criterion [28].
The identification problem is then to select a model in the model set that de-
scribes the observed behaviour best, in the sense of the chosen criterion. In
this section, these basic elements will be described in detail by introducing the
mathematical formalism and stating the assumptions regarding their proper-
ties.

3.1.1 The observed behaviour

The device behaviour is obtained from the device by performing a number of
experiments. For this purpose, the deviceD is embedded in an experimentation
environment E to form the observable system, denoted by O, which is repre-
sented in Figure 3.1. To describe the experiments, it is customary to differenti-
ate between the independent and dependent interface variables of the device.
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The vector of independent variables ū is then associated with the stimulus that
is applied to the device, while the vector of dependent variables ȳ is associated
with the subsequent response of the device. The device D establishes a rela-
tionship between the nu independent variables and the ny dependent variables
of the form

ȳ = hD(ū)

where hD ∈ IRnu → IRny is a deterministic function representing the be-
haviour of the device for that particular choice of the independent and depen-
dent interface variables.

As the device cannot be separated from its environment, only the behaviour
of the whole system O can actually be observed. The observations of O are
denoted by an nx-dimensional vector x̄ composed of the observed values of the
independent and dependent interface variables of the device:

x̄ =

 x1
...

xnx

 =

[
ū
ȳ

]
+ ē

The additional stochastic vector ē represents the errors that affect these obser-
vations.

The observed behaviour of the system O is obtained in the form of a set of
N observations X = {x̄1, . . . , x̄N}. Each observation x̄i ∈ X is associated
with a single experiment under the experimental conditions determined by a
realization of the vector of independent variables ūi. It is assumed that all the
observations in X are independent of one another. In fact, the device interface
can always be chosen in such a way that this assumption is valid.

3.1.2 The observational accuracy

The goal of devicemodelling is the description of the behaviour of the deviceD.
However, since these observations are derived from the observable system O,
each observation x̄i of the device behaviour is affected by an observation error
ēi. Without any a priori knowledge about these observation errors, the obser-
vations are meaningless as estimates of the true values of the device interface
variables. Therefore, each observation must be accompanied by a specification
of its accuracy.

A full specification of the accuracy of an observation x̄i would consist of the
probability density function of the observation error p(ēi), or at least its first
and second moments, E(ēi) and E(ēiē

t
i). In practice, this kind of knowledge

will hardly ever be available. We will therefore limit our requirements to an
absolute minimum and will only presume that the accuracy of the observations
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is specified in the form of the possible upper bounds of the magnitude of the
observation errors, the so-called error intervals. Denoting an observation by
x̄i ± ∆x̄i, the error interval ∆x̄i then determines a closed domain, centered
at the observation, in which the true value is expected to lie. Since the actual
realizations of the observation errors are not known, the observations x̄i are
accepted as the best available estimates of the true values of device interface
variables.

3.1.3 The devicemodel

In Section 2.1, a device model was introduced as a hypothesis about the observ-
able device behaviour. As such, a device model proposes a functional relation-
ship between the interface variables of the device. The mathematical repre-
sentation of this functional relationship is composed of a structure and a set of
parameters. The choice of a model structure defines the set of models, denoted
byM, from which the actual model is to be selected. The members of the set
M are parameterized by an np-dimensional vector p̄ of structural parameters.
Hence, a specific member ofM will be represented byM(p̄).

A given model M(p̄) can be interpreted as a hypothesis about the expected
outcome of the experiments. A convenient mathematical formalism for ex-
pressing this expectation is as a set of nf equality constraints on the values of
the interface variables and the structural parameters

fM(p̄, x̄) = 0̄ (3.1)

The function fM ∈ IRnp × IRnx → IRnf specifies the structure of the class
of models M, which for analytical models as well as for data-fitting models is
represented in the form of a set of analytical expressions (for more details see
Appendix A).

Since a device model necessarily excludes many aspects of reality, the set of
modelsM does not contain the “true” representation of the deviceD, denoted
by the function hD. The behaviour of D can only be approximated within the
specified class ofmodels. Hence, themodel parameters, which have to be deter-
mined from the observed device behaviour, do not exist in any absolute sense.
This qualitative vagueness of themodel hypothesis will have to be compensated
with a quantitative tolerance with respect to the parameters.

3.1.4 The identification criterion

According to the modelling criterion, the validity of a model hypothesisM(p̄)
describing the deviceD is testedwith the observed behaviourX . In general, the
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model equations (3.1) will not hold for the observations x̄i ∈ X , because of the
observation errors and the approximative nature of the model. This discrep-
ancy between the model and the observations will be expressed by postulating
an identification criterion, a scalar function C(M(p̄),X ). Although the model
M(p̄) and the system O are not in the same domain, and therefore cannot be
compared directly, the criterion C will be regarded as a measure of the distance
between them, on the basis of the available data X . As C defines a distance
measure, it must satisfy the condition C ≥ 0, where the equality may only hold
when the model and the system are considered to be identical, i.e. when the
model equations (3.1) hold for all x̄i ∈ X .

For the purpose of identification, the criterion can be reformulated as a scalar
function of the structural parameters. This scalar function C(p̄) is usually re-
ferred to as the objective function of the identification problem. The param-
eter vector that minimizes the objective function will be denoted by p̄∗. The
modelM(p̄∗) is then the best representation of the device in the model setM
according to the given criterion C and the observed behaviour X .

Since it is not possible to reduce C to 0 for the reasons that were stated, the
form of the criterion determines the characteristics of the model that is finally
adopted. The choice of the criterion C should therefore be guided by the a priori
knowledge that is available about the observation errors and the accuracy of the
device model.

3.2 Model validity andmodel accuracy

According to the modelling criterion, the validity of the model hypothesis can
be ascertained by comparing the observed device behaviour with the device
behaviour that is predicted by the model. The quantification of the concept of
model validity therefore depends on themetric that is used for this comparison,
thereby relating model validity to model accuracy.

A description of the accuracy of the model is also the key to gaining insight
in the characteristics of the different identification methods. In this section
we will introduce a topological interpretation of model identification, thereby
establishing a relation between the identification criterion and the description
of the model accuracy.

3.2.1 Themodel accuracy limit

The accuracy of a model in predicting the observed device behaviour is limited
by the inaccuracy of the observations and by the approximative nature of the
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Figure 3.2: An example of an observation space (nx = 2).

model itself. We will seek to determine this limit by examining the relation be-
tween the model and the observed behaviour. For this purpose, we introduce
two vector spaces: the observation space and the parameter space. The observation
space is the nx-dimensional linear space in which the values of the interface
variables are interpreted as the co-ordinates. In this space, the observations x̄i
are represented as points, the so-called data points. The parameter space is the
np-dimensional linear space in which the values of the structural parameters
are interpreted as the co-ordinates. Each modelM(p̄) that is a member of the
model setM is represented as a point in this space. The relation between the
parameter space and the observation space is established by the model equa-
tions 3.1. This relation will be visualized with the help of an example.

The behaviour of a device with two interface variables, x1 and x2, is represented
in the observation space shown in Figure 3.2, where the observations aremarked
(+). A simple linear model x2 − ax1 − b = 0 is postulated for the description
of these observations. The two parameters of this model, a and b, define the
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axes of the parameter space shown in Figure 3.3. For each choice of parameter
values, the model is reduced to an equality constraint on the values of the in-
terface variables. Such a constraint defines a subspace in the observation space;
in this specific case the subspace can be represented by a straight line. Hence,
the model associates a subspace in the observation space with each point in
the parameter space. Vice versa, each point in the observation space defines an
equality constraint on the values of the parameters, so that each observation is
associated with a subspace in the parameter space. The subspaces associated
with the observations given in Figure 3.2 are represented as straight lines in the
parameter space in Figure 3.3.

From Figure 3.3 it will be clear that there is no single point (a, b) in the pa-
rameter space that satisfies all constraints. Consequently, the parameter set
of the model is not uniquely determined by the observations. Instead, the ob-
servations circumscribe a compact (np-dimensional) subspace in the parameter
space, in this example the area marked (A,B,C), the extent of which is com-
pletely determined by the observation errors and the modelling errors. We will
name this subspace the identification space PX , as all the models in this subspace
can be derived from the observed behaviour. This tolerance in the parameter
space corresponds to a set of model curves in the observation space, none of
which passes exactly through all the data points.

3.2.2 The residuals

To quantify the accuracy of a model, we must first define a metric in the ob-
servation space. Since the limited accuracy of a device model will subsequently
limit the precision of any design criterion or other conclusion that is based on
it, the minimum model accuracy that is required for the proposed application
should always be specified. The specification of the required model accuracy
implies the definition of an accuracy metric. The choice of this metric, which
inevitably reflects a certain weighting of features of the device behaviour, ac-
tually sets the goal of the modelling process.

The distance, with respect to the chosen metric, between a data point x̄i and
the subspace defined by themodelM(p̄) is called the residual of the data point.
This residual, which will be denoted by ϵi, can be regarded as a scalar function
of the parameter vector p̄ ; however, the term is also used for the value of ϵi
that corresponds to a particular choice of the parameter vector p̄ ∈ PX . Since a
residual represents a distancemeasure, themetric axiom ϵi ≥ 0will be satisfied.
The set of residuals {ϵ1, . . . , ϵN} is then a measure of the accuracy with which
the modelM(p̄) predicts the observed behaviour.

As the accuracy requirement imposes a definite upper bound on the distances
between themodel curve and each of the data points x̄i, the accuracymetric can
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be defined in such a way that this bound is represented by the constraint ϵi ≤ 1.
In this way, the required accuracy is used as a reference. The observation errors,
which also contribute to the values of the residuals, determine the fundamental
limit of the attainable model accuracy. Hence, the required model accuracy
should not be chosen too restrictive, but allow for an observation error of∆x̄i.
Under this condition, the constraint on the residuals can be interpreted as a
local validity criterion: when ϵ ≤ 1 for some data point, the model hypothesis
can be accepted as valid for that data point. However, when one of the residuals
exceeds this bound, the model hypothesis is considered to be invalid for the
data set X (or falsified [14]), and unsuitable for the proposed application.

3.2.3 The identification criterion

It is the goal of every identification method to maximize the accuracy with
which the model represents the observed behaviour. As this accuracy is ex-
pressed by the set of residuals {ϵ1, . . . , ϵN}, this means that we should strive
to minimize all the residuals simultaneously. However, the model accuracy that
can be attained is always limited. In Section 3.2.1 this limit was equated to the
identification space PX . That this subspace satisfies the requirement of min-
imizing all the residuals simultaneously is guaranteed by the following formal
definition of PX :

A point p̄ in the parameter space belongs to the identification space
PX when there exists no point p̄′ ̸= p̄ for which the relation ϵi(p̄′) ≤
ϵi(p̄) holds for all observations x̄i ∈ X .

A concise description of the identification space is therefore a pragmatic so-
lution of the identification problem. For this purpose, the information that is
represented by the set PX should be reduced to a small set of principal charac-
teristics describing the location (or central tendency) and the extent of PX in
the parameter space [13].

Now consider the following identification criterion (or objective function) over
the parameter space:

C(p̄) =
N∑
i=1

l(ϵi(p̄))

where the scalar function l is a strictly increasing function of the residuals, and
l(0) = 0. Note that each observation contributes its residual to C indepen-
dent of all other observations, and that the weight of each contribution only
depends on the size of the residual, and thus only on the definition of the local
accuracy metric. Under these conditions the minimum point p̄∗ of C(p̄) over the
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parameter space will always be an element of the identification space. Hence,
the parameter set p̄∗ locates PX in the parameter space.

Having located PX , we can examine the extent of PX , i.e. the distribution of
the constraints in the parameter space about p̄∗. For this purpose, we introduce
a measure of dispersion δ, a scalar quantity which is defined by

δ = g(
1

N
C(p̄∗))

where g is a strictly increasing scalar function, and g(0) = 0. While the residu-
als are a measure of the local accuracy of the model, the dispersion is a measure
of the accuracy of the model over the whole ensemble X , and thus of the pre-
cision of the model in the parameter space.

For all practical purposes, the identification space is adequately described by
supplying a measure of its location p̄∗ and a measure of its dispersion δ. Which
measures are eventually used depends on the choice that is made for the func-
tions l and g.

3.3 Conventional identificationmethods

From our discussion thus far it follows that model identification consists of two
subsequent steps:

1. the formulation of an objective function, and

2. the minimization of this function with respect to the parameters in order
to determine the optimum parameter set.

In some very special cases the minimization can be done analytically. How-
ever, in most cases a numerical procedure is required. This is the basic prob-
lem which is addressed by the applied mathematical branch of non-linear pro-
gramming. Although the available minimization algorithms are manifold, their
applicability depends on the form of the objective function that is chosen. An
objective function for which no effective minimization method exists can be
of theoretical interest, but no practical identification method can be based on
it. Hence, even when the form of the objective function is completely deter-
mined by a priori knowledge about the observation errors and the modelling
errors, this form will often have to be adapted to meet the requirements of a
reliable and efficient minimization technique. These computational consider-
ations tend to influence the choice of the objective function to such an extent
that a single identification method now dominates the field: the method of
least squares. Most implementations of identification methods that are found
in literature [6–11] or are available commercially [12] fall in this category.
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3.3.1 The least-squaresmethod

The least-squares method is usually attributed to Carl Friedrich Gauss (por-
trayed on the cover), who formulated its basic principle in 1809, and proposed
it as a general identification method [29]. In a modelling context his principle
of least squares (abbreviated LS) can be paraphrased as:

The most appropriate values for the unknown but desired model parame-
ters are those for which the sum of the squares of the residuals is as small as
possible.

The parameter set that obeys this principle will therefore be the minimum
point p̄∗ of the objective function

C2(p̄) =
N∑
i=1

ϵi(p̄)
2 (3.2)

Further, it is common practice to define the dispersion as

δ2 =

√
1

N
C2(p̄∗) (3.3)

which is also known as the RMS (Root Mean Square) error of the model—
strictly speaking a misnomer since the residuals are not necessarily equivalent
to the modelling errors.

To gain some insight in the nature of the LS principle it is interesting to quote
Gauss again [29]:

This principle, … , must be considered an axiom with the same pro-
priety as the arithmetical mean of several observed values of the
same quantity is adopted as the most probable value.

As a matter of fact, it is easy to show that the mean is just a special case of
the application of the LS principle. Hence, we will slightly extend the concept
of the mean, and state that the LS principle identifies the mean of the obser-
vational data in the parameter space. The mean is perhaps the most generally
used statistical measure of location, and is in fact far older than the science of
statistics to which it now belongs.

The term “most probable” in the quotation suggests an interpretation of the
LS principle that has led, in the past, to confusion. The LS principle was orig-
inally derived by Gauss using probabilistic methods [13]. A LS identification
method is then concerned with determining the most probable distribution
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of the residuals and consequently the most probable value of the parameters.
Hence, in theory, the application of a LS method requires certain probabilistic
assumptions about the residuals. However, it must be emphasized here that
the introduction of these assumptions, which will generally be invalid, is often
only a convention for solving a practical problem.

The LS principle can be motivated independently of probability theory by in-
terpreting the mean not as the most probable value, but merely as the most
convenient measure of location. What gives the LS criterion its greatest im-
portance in practice, is its superior mathematical tractability. The mathemat-
ical simplicity of the LS formulation appealed to Gauss and it has appealed to
almost everyone concerned with the analysis of observations ever since. Pow-
erful and elegant algorithms have been developed for the minimization of the
LS objective function. The availability of these algorithms is a dominant rea-
son for the proliferation of the LS identification method. However, since the
LS method has no formal mathematical basis in and of itself, the reasons for
accepting it can only be pragmatic. Therefore, as with any other systematic
principle or axiom, the acceptability of the LS method depends on the accept-
ability of the results to which it leads.

3.3.2 The results

The outcome of an identification method is a description of the identification
space, whereas most applications of device models require a single parameter
set. This conflict is usually resolved by choosing the location of the identifica-
tion space p̄∗ as the identified parameter set. Figure 3.4 shows the result of
the LS method in the parameter space for the example of Section 3.2.1. The
mean parameter set determined by the LS method lies at the “centre of grav-
ity” of the identification space. The associated model curve in the observation
space is shown in Figure 3.5. Here, the averaging effect of the LS method has
distributed the (limited) model accuracy evenly over all the observations.

The acceptability of this result depends on its accuracy. Obviously, the use of
a single parameter set to represent the identification space only makes sense
when the dispersion is sufficiently small. More specifically, the parameter set
p̄∗ can only be accepted when the model M(p̄∗) is valid for the given set of
observations X . Hence, if the accuracy of the LS model curve proves to be
insufficient, and the validity requirement is not met, then the mean param-
eter set must be rejected. The consequences of such a rejection depend on
the nature of the model. Although the representations of analytical models
and data-fitting models are often similar—they may even share the same model
structure—the differences in their approach to the modelling problem should
not be overlooked.
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Figure 3.4: The location of the mean in PX .
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Figure 3.5: The least-squares model curve.

A data-fitting model is a compact representation of the observed behaviour,
which aims to reproduce the complete set of observations X with maximum
accuracy. By definition, maximum accuracy is achieved by minimizing a fit-
ting criterion, which forms an integral part of the model. Here, the objective
function plays the role of the fitting criterion, and the mean parameter set p̄∗
minimizes this criterion. Hence, the rejection of the mean parameter set en-
sues the rejection of the data-fitting model as a whole. In order to represent
the given set of observationsX wemust then make a different choice for either
the model structure or the fitting criterion or both.

By contrast, in the case of an analytical model the rejection of the mean param-
eter set does not necessarily cast doubt on the model structure. As the validity
domain of an analytical model is always finite, it may not include the whole data
set X , so we should instead reject some of the observations. By using the LS
method indiscriminately, we are allowing observations that lie outside the va-
lidity domain of the model, and which contain no useful information about the
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model, to bias the identified parameters in their favour. Because of this bias,
the LSmethod will fail to determine the parameters of an analytical model with
sufficient accuracy in many practical identification problems.

However, due to the convenience of the LS method, there has been a tendency
to treat all analytical devicemodels as data-fittingmodels with respect to identi-
fication. This approach severely limits the usefulness of thesemodels for circuit
design. Therefore, to take full advantage of the superior properties of the an-
alytical device models, an equally convenient but more rigorous method needs
to be developed for their identification.

3.4 Mode selection

When the analytical device models were introduced in Section 2.2.2 it was sug-
gested that the parameters of these models exist in their own right as they rep-
resent physical quantities. However, since a model is an approximation of re-
ality and the accuracy of this approximation is necessarily limited, these “true”
parameters cannot exist in any absolute sense. Nevertheless, we will generally
find that the true parameters of an analytical model can be defined in an asymp-
totical sense. It is this set of parameters that we will seek to determine.

3.4.1 Themode

The choice of a parameter set p̄ ∈ PX as an estimate of the true parameters
of an analytical model requires a trade-off between the residuals of the obser-
vations. In fact, each choice for p̄ implies a hypothesis about the distribution
of the model accuracy over the observations. Not every distribution of the ac-
curacy is equally plausible when taking into consideration the limited extent
of the validity domain of an analytical model. The validity domain divides the
set of observations X into two disjoint subsets: the set of observations that lie
within the validity domain of the model V , and the set of observations that lie
outside it V . The residuals of all observations in V will satisfy the validity crite-
rion ϵ ≤ 1, while the residuals of the observations in V will all fail this criterion.
Hence, for an analytical model the distribution of the model accuracy over the
observations tends to be particularly uneven.

The uneven distribution of the model accuracy in the observation space is re-
flected in the parameter space, where all the observations in V agree on a rel-
atively small region in the identification space, say ϕ ⊂ PX . The observations
in V neither agree with the parameter values in ϕ, but what is more important,
nor do they have any definite relation with one another. As a result, the iden-
tification space of an analytical model does not have a homogeneous structure,
but contains a cluster.
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The link between the validity domain of a model and a cluster in the parameter
space provides the basis for a more accurate identification method for analyt-
ical models. If, to begin with, there exists a distinct cluster in the parameter
space, then it should be possible to identify the set V by locating this cluster.
Furthermore, the location of this cluster is a good estimate of the true values
of the model parameters, as it is determined only by the observations for which
the model is sufficiently accurate. Now, the extent of the validity domain of
an analytical model is not fixed for a device but depends on the modelling goal;
a more stringent accuracy requirement will result in a smaller validity domain,
and hence a smaller set V . This will in turn result in a different estimate for
the model parameters. Because this estimate is determined by observations for
which the model is even more accurate, it will be an even closer approxima-
tion of the true parameters of the model, which are, of course, independent of
the modelling goal. This reasoning can be taken one decisive step further by
concluding that when the cluster in the identification space is located using an
increasingly stricter accuracy requirement, its location will approach the true
parameter set of the model. In practice, this asymptotic procedure is halted
either by the magnitude of the observation errors, or by the limited number
of the observations. In theory, however, the cluster could (in the limit) be re-
duced to a single point in the identification space. This point, which can be
qualified as the mode1 of the identification space, could then be defined as the
true parameter set of the model. Therefore, we will state as a general principle
that:

The mode of the observational data in the parameter space provides the
most appropriate values for the unknown parameters of an analytical de-
vice model with a finite validity domain.

Figure 3.6 shows the location of the mode of the identification space for our
running example. The indicated point is clearly a focal point for the observa-
tional data in the parameter space. The associated model curve in the obser-
vation space is shown in Figure 3.7. Here, the model accuracy is unevenly dis-
tributed over the observations in comparison with the LSmodel (see Figure 3.5).
The model accuracy is high for observations that have low values of x, while
gradually deteriorating for observations that have higher values of x. When we
interpret the marks (+) as the validity bars of the observations (which are com-
parable to error bars, except that they indicate the maximum acceptable error),
we find that the linear model hypothesis is valid for about half the observa-
tions. Moreover, the fact that these observations form an uninterrupted series
suggests a validity domain for the model that can be specified as 0 ≤ x ≤ 10.

1This usage of the term complies with the conventional use of the mode as a descriptive
statistic on statistical data [13].
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Figure 3.7: The most appropriate analytical model curve.

In the preceding discussion the mode was introduced in rather loose terms.
However, a strict mathematical definition of the concept is indispensable for
the development of a procedure for its identification. We therefore proceed by
proposing such a definition. Consider the following function of the parameters

N (p̄) =
N∑
i=1

{
1 if ϵi(p̄) ≤ ν
0 if ϵi(p̄) > ν

(3.4)

This function counts the number of observations that agree on each value of
p̄, given the accuracy requirement ϵ ≤ ν (hence 0 < ν ≤ 1). When applied to
the identification space, the cluster will be characterized by large values of N .
Hence, the point (or, more precisely, the small region ϕ ⊂ PX ) that maximizes
N can serve as the location of the cluster and as an estimate of the mode. As
the accuracy of this estimate depends on the value of ν, the indeterminacy in
the location of the mode could be removed by reducing the value of ν to zero.
Again, in practice, the choice of an acceptable lower bound for ν is a subtle
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problem. Although smaller ν gives a better resolution in the parameter space
and increases the chance of accurately locating a very sharp mode, smaller ν
also gives poorer results in separating the true ensemble mode from chance
fluctuations in the data.

Just like the mean was defined as the minimum point of the LS objective func-
tion (3.2), we can now formulate an objective function that has the mode as its
minimum point. The function

C0(p̄) = N −N (p̄)

is an obvious choice (although C0 does not fully conform to the definition of
an objective function that was given in Section 3.2.3, as the function l(ϵ) is not
strictly increasing). However, the minimization of this objective function will
be problematic. The function completely consists of flat “plateaus” and dis-
continuities, and usually has many local minima, or sub-modes (especially for
small values of ν), none of which can be handled by the standard minimiza-
tion algorithms [30]. We reiterate that the usefulness of an objective function
(and ultimately of the theory behind it) stands or falls with the availability of
an effective minimization method. There have been several attempts to con-
struct objective functions that have the mode as their global minimum and can
be minimized by standard minimization techniques. The resulting so-called
robust estimation methods [31, 32] are, however, not completely successful. Al-
though most of these methods have succeeded in eliminating the plateaus and
the discontinuities from the objective function, unimodality of the objective
function has not been achieved. This makes these methods unreliable. As a
consequence, they have never acquired much popularity in the field of device
model identification. Actually, by the very nature of the problem it is unlikely
that a unimodal objective function for the mode even exists. The minimiza-
tion of a single objective function is just not the appropriate way to solve what
is basically a partitioning problem: selecting a subset of X for which the model
is sufficiently accurate.

3.4.2 Themode selection criterion

To arrive at a practical criterion for the identification of the mode, we will in
effect turn around the definition of the mode that finds expression in (3.4).
There, an estimate of the mode is obtained by searching the parameter space
for a parameter set that is agreed on by as many observations as possible. Here,
we hope to obtain the same result by searching the set of observations X for
the largest subset of which all the members agree on the same parameter set.

The search space is thus no longer the parameter space, but comprises all possi-
ble subsets S ofX . To represent these subsets we introduce theN -dimensional
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selection vector s̄. Each element si of the selection vector corresponds to an
observation x̄i ∈ X , and can only have one of two values:

si =

{
1 if x̄i ∈ S
0 if x̄i ̸∈ S

In this way, each subset S is assigned a unique selection vector s̄. Henceforth,
we will use either notation where appropriate.

Each set S ⊂ X defines an identification space PS ⊂ PX , the extent of which
can be described using a suitable measure of dispersion such as δ2 (3.3), which
thus becomes a function of the selection vector δ2(s̄). Due to the clustering in
the parameter space, there will be subsets of X , notably the set V , that have a
small value for the dispersion, not only compared with the dispersion for the
complete set X , but also compared with other subsets which contain the same
number of observations. Hence, the cluster in the parameter space can be lo-
cated by determining the subset in X that contains a large fraction of the total
number of observations, while possessing a low value for the dispersion.

Since these two objectives are incompatible, the optimum subset will have to be
a compromise. One way of combining both objectives in a single identification
criterion for the mode is given below. The mode selection criterion is formulated
as a constrained optimization problem over the selection vector:

maximize
s̄

N (s̄) =
N∑
i=1

si

subject to δ2(s̄) ≤ ω

(3.5)

where the bound on the dispersion ω, which in effect weighs the two objectives
against each other, has some small positive value, usually 0 < ω ≤ 1. The set
of observations that solves this problem s̄∗ (or in set notation S∗) will be called
the mode set.

The observations in the mode set reduce the indeterminacy of the location of
the mode to the extent of their identification space PS∗ . When the extent of
this identification space is small in comparison to the extent of PX (which will
be the case for small values of ω), we can safely accept the location of PS∗ as
an estimate of the mode of PX . However, since the extent of the PS∗ is small,
there is no compelling reason for choosing any particular measure of location.
Hence, bearing in mind the computational convenience of the LS criterion, we
will choose the mean parameters of the mode set as the estimate of the mode
of PX . The associated measure of dispersion δ2(s̄

∗) can then be interpreted
as a measure of the accuracy of this estimate—which is incidentally the main
argument for using δ2 as the measure of dispersion in (3.5). The role of the
bound ω in (3.5) is thus comparable to that of the bound ν in (3.4).



Mode selection 38

The problem of finding the optimum of the mode selection criterion (3.5) be-
longs (together withmost partitioning problems [33]) to the class ofNP-complete
problems [1]. As the number of possible subsets in X equals 2N , the computa-
tional effort required for an exhaustive examination of the search space doubles
for each observation that is added to X . Therefore, an exhaustive procedure
for finding the global optimum of (3.5) must be ruled out because of the pro-
hibitive computational effort that would be required to solve most practical
identification problems. Even if, for instance, the dispersion of each subset S
could be calculated within 1 ms, an exhaustive search for a data set containing
only 100 observations would already take well over 1019 years (which is a billion
times the approximate age of the universe).

The example shows that it is imperative to employ an optimization strategy
that examines only a small number of potential solutions in the search space in
a systematic manner. Of course, such a systematic (and thus local) examination
of the search space can only succeed when the optimization problem has some
regular overall structure. However, there are good reasons to expect that for
the identification problems being considered here such a structure does indeed
exist. First of all, we are applying the mode selection criterion not to random
data, but to observational data that has been obtained from a real “physical”
device. Moreover, an analytical model is expected to approximate this data in a
highly characteristic way, namely asymptotically (i.e. outside the validity domain,
the model accuracy deteriorates only gradually). The analysis of a considerable
number of practical identification problems has indeed revealed a characteristic
and consistent problem structure. By exploiting this problem structure we have
been able to develop a heuristic method for selecting the mode set, which has
proven to be both reliable and efficient.

3.4.3 The selection space

Before presenting the optimization strategy, we will first apply an ordering
to the search space. For this purpose we introduce the selection space, an N -
dimensional binary space in which the elements of the selection vector si (i =
1, . . . , N) are interpreted as co-ordinates. The distance between two points in
the selection space is defined as the number of co-ordinates at which they dis-
agree, which is an effective measure of the similarity between the associated
subsets. Hence, a step of length one in the selection space corresponds to the
modification of the current set by adding or removing a single observation. A
binary space in which this distance measure is defined is generally referred to
as a sequence space.

The dispersion δ2 and set sizeN are now functions over the selection space. In
Figure 3.8 the selection space forN = 4 is represented in a form that allows the
value ofN to be displayed along the vertical axis. All points that are a distance
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Figure 3.8: The selection space for N = 4.

of one apart are connected by a line. At every horizontal level N = n in the
selection space there will be a point s̄∗(n) that has the lowest value for the dis-
persion δ∗2(n). If we take ω = δ∗2(n) and then solve (3.5), we should obtain this
point s̄∗(n) as an estimate of themode set s̄∗. Now the dispersion δ2 of a set can
always be reduced by removing one of its members (when δ2 > 0 such a mem-
ber can always be found). Therefore, the minimum dispersion δ∗2(n) decreases
for smaller values of n. Hence, solving (3.5) for gradually decreasing values of ω
would result in a whole sequence of mode-set estimates on successively lower
levels in the selection space. The aim of an optimization algorithm is now to
find a path (preferably the shortest) through the selection space from the initial
estimate at s̄ = 1̄ (N = N ) to the optimum mode set s̄∗.

3.4.4 The optimization strategy

Since the optimization problem (3.5) is expected to have a regular overall struc-
ture, we will only consider local-search algorithms [34]. These algorithms can
be formulated as follows. Starting at the initial point, a sequence of iterations
s̄(k) (k = 1, 2, . . .) is generated, each consisting of a step from the current point
to a point selected from the neighbourhood of the current point. Each step is
selected by comparing the dispersion and set size at the current point with the
dispersion and the set size at the neighbouring points. The search is terminated
when a point is reached that satisfies the mode selection criterion better than
any of its neighbours. As all steps are chosen on the basis of local information,
this optimization strategy relies on extrapolation to find the global solution.

The computational effort that is required by the algorithm to find the solution
depends on the maximum distance that it is allowed to travel per step. The
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step length determines the extent of the local neighbourhoods, and hence the
number of points that have to be examined per iteration. For example, if we
choose the step length to be N , the local neighbourhood of each point will
include the whole selection space. Although the solution can then be reached
in a single step, we must perform an exhaustive search of the selection space
to select the correct step, which is an O(2N ) procedure. If, on the other hand,
we choose a step length of one, the local neighbourhood of each point contains
only N points. Still, the algorithm would be able to reach each point in the
search space, including the solution, from any starting position in nomore than
N steps (of course provided that the algorithm selects the correct step every
time). Hence, traversing the selection space using steps of length one can be an
O(N2) procedure. However, the smaller neighbourhood also means that less
information is available for the decision on the step direction. Therefore, the
choice of such a small step size puts high demands on the problem structure.

A sufficient problem structure is provided by the following premise:

The mode set s̄∗(n − 1) is a subset of the mode set s̄∗(n) for all
n ∈ {N, . . . ,N (s̄∗)}.

This puts the mode sets in each others neighbourhoods, so the optimum step
direction can be selected by simplyminimizing δ2 over the neighbouring points.
The optimization algorithm can then follow a path through the selection space
consisting completely of estimates of the mode set s̄(k) = s̄∗(N − k), sequen-
tially eliminating observations from the current set that are not in the mode
set s̄∗. In practice, we find that the premise does not hold for small n (or small
ω). However, the low dispersion of small isolated subsets is likely to be caused
by random fluctuations in the data. Hence, these subsets should indeed not be
considered as candidates for themode set. In other words, the premise requires
the mode to be a global feature of the identification space.

By basing our optimization strategy on this premise we have in effect modified
the definition of the mode. The mode for a set of observations S (starting with
S = X ) is now defined by the recursive sequence:

1. select the set S \ x̄i (for x̄i ∈ S) that minimizes δ2, and

2. determine the mode for the set S \ x̄i.

By this process of stepwise refinement, henceforth referred to as the mode selec-
tion method (abbreviated MODES), we aim to locate the ensemble mode with
increasing accuracy. The value of ω in the constraint on δ2 in (3.5), which plays
the role of the stopping criterion for the algorithm, then specifies the accuracy
with which the location of the ensemble mode is to be approximated.



Mode selection 41

The measure of location that is defined by the MODES algorithm is often a
better candidate for the mode of the observational data, at least in the sense of
an intuitive interpretation of the concept, than the one given in Section 3.4.1.
The standard definition of the mode (3.4) introduces the accuracy parameter
ν in the identification problem. We have seen that even for the most accu-
rate models and observations, there exist a lower bound for ν below which the
grouping becomes ineffective. When the value of ν is decreased any further,
the location of the maximum ofN may suddenly shift to a different point any-
where in PX . Hence, for small values of the accuracy parameter ν the point in
the identification space that is designated as the mode is no longer a consistent
measure of the central tendency of the data.

The MODES algorithm avoids this problem by sequentially eliminating those
sections of the identification space PX that are unlikely to contain the mode.
As the extent of the identification space is only reduced (and with it the in-
determinacy in the location of the mode), the recursively defined mode is a
highly consistent measure of location. Moreover, since the mode selection cri-
terion is based on the least-squares criterion, it inherits its convenient math-
ematical structure. This mathematical structure makes it possible to develop
an efficient method to calculate the location and dispersion for the selected
subsets, but also to solve the selection problem itself. These properties make
the MODES method particularly appropriate for the identification of analyti-
cal models. The implementation of this method will be the subject of the next
chapter.
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Implementation

The implementation of the mode selection method (MODES) can be subdi-
vided into three hierarchically related minimization problems:

1. the calculation of the residuals for fixed s̄ and p̄, minimizing a distance
function with respect to x̄,

2. the calculation of the location and dispersion for fixed s̄, minimizing the
least-squares objective function C2 with respect to p̄, and finally

3. the selection of the mode set, minimizing the dispersion δ2 with respect
to s̄.

In the subsequent sections we will develop algorithms for solving these three
minimization problems that are both reliable and efficient.

4.1 The residuals

The first step in evaluating the mode selection criterion (3.5) is the calculation
of the residuals of the observations. In Section 3.2.2 the residual of an obser-
vation was introduced as the distance in the observation space between the
observation and the model subspace. The geometric concept of distance rests
on the definition of a metric. The formal definition of this metric will complete
the specification of the identification criterion.

42
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4.1.1 The accuracymetric

The weighted Euclidean distance [35] between an observation, denoted by x̄0,
and an arbitrary point x̄ in the observation space is defined by

d(x̄0, x̄)
∆
=
√
(x̄− x̄0)tV (x̄− x̄0)

where d ∈ IRnx × IRnx → IR is the distance function, and the nx × nx matrix
V represents the metric (or the local scale by which the distance is measured).
To satisfy the metric axiom d(x̄0, x̄) ≥ 0, with equality if and only if x̄ = x̄0,
the matrix V must be positive definite.

According to Section 3.2.2, the required model accuracy defines a reference dis-
tance and hence an accuracy metric. More specifically, all points x̄ in the ob-
servation space that approximate the observation with sufficient accuracy must
satisfy the inequality

d(x̄0, x̄) ≤ 1

This is the equation of a region bounded by an nx-dimensional ellipsoid cen-
tered at the observation. Because the required model accuracy is associated
with the local validity criterion this region will be called the validity region of
the observation.

The principal axes of the ellipsoid are parallel to the eigenvectors of V , while
their lengths are inversely proportional to the square roots of the corresponding
eigenvalues of V . When specifying the accuracy metric of an observation it is
common practice to choose the principal axes of the ellipsoid parallel to the co-
ordinate axes of the observation space. With this simplification the accuracy
metric V can be represented by a diagonal matrix

V =


1/v1

2

1/v2
2

. . .
1/vnx

2


where the semi-axes of the ellipsoid have lengths vi (i = 1, . . . , nx) relative to
the interface variables xi (i = 1, . . . , nx). This is illustrated in Figure 4.1 for a
two-dimensional observation space.

Since the required model accuracy may depend on the observation, and since
the observations are all independent, we assign a specific accuracy metric Vi

(i = 1, . . . , N) to each observation.
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Figure 4.1: The validity region of an observation.

4.1.2 Themodel subspace

A device model (for a particular value of the parameter vector p̄) defines a func-
tional relationship between the interface variables:

f (x̄) = 0̄ (4.1)

where f ∈ IRnx → IRnf . The model therefore determines an (nx − nf )-
dimensional subspace in the observation space, where it is assumed that nx ≥
nf , as is the case for all practical models.

In Euclidean geometry the distance between a point and a subspace is defined as
the distance between this point and the nearest point in the subspace. Hence,
to determine the residual of an observation we must, among all the points x̄
that satisfy (4.1), find the one that minimizes the distance d(x̄0, x̄). This implies
solving the following equality constrained minimization problem

minimize
x̄

d(x̄0, x̄)

subject to f(x̄) = 0̄
(4.2)

The vector x̄∗ that solves this problem corresponds to the point in the model
subspace that is closest to the observation x0 with respect to the given met-
ric V . Hence, the residual can be written as

ϵ = d(x̄0, x̄
∗) =

√
(x̄∗ − x̄0)tV (x̄∗ − x̄0) (4.3)

If themodel subspace intersects the validity region of the observation, the point
x̄∗ will be a member of the validity region. Then the residual will be less than
one, satisfying the local validity criterion.
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Figure 4.2: The nearest points on the model curve.

A geometrical interpretation of the residuals (for nx = 2 and nf = 1) is shown
in Figure 4.2. Here the scale of the representation has been chosen such that the
validity regions of both observations are bounded by circles. The points x̄∗ are
then the feet of the perpendiculars from the observations onto themodel curve.
The residuals are equal to the lengths of these perpendiculars (with respect to
the chosen metric).

Calculating the residuals means solving the constrained minimization problem
(4.2) for each observation. This is generally considered to be an arduous task,
especially if the constraints are non-linear. Hence, there is a tendency tomodify
the definition of the residuals to facilitate their calculation.

4.1.3 Device simulation

If a reduction of the dimension (degrees of freedom) of the validity regions of
the observations is considered acceptable, the problem of calculating the resid-
uals can be simplified to a significant extent. To this end, the interface variables
are divided into two groups: the independent variables ū ∈ IR(nx−nf ), and the
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dependent variables ȳ ∈ IRnf . This division may be, and often is, the same
as the one that was used for the experiment. According to the implicit func-
tion theorem [36], the nf model constraints define (under certain conditions)
a function from the independent to the dependent variables of the form

ȳ = h(ū)

where h ∈ IR(nx−nf ) → IRnf . When now the values of the independent vari-
ables are taken to be fixed and equal to the observed values, the expression for
the residual (4.3) can be reduced to

ϵ =
√
(h(ū0)− ȳ0)tVy(h(ū0)− ȳ0) (4.4)

where ū0 and ȳ0 stand for the observed values of the interface variables. The
nf × nf matrix Vy, which defines the accuracy metric for the dependent vari-
ables, is a reduced form of the matrix V ; all rows and columns of V associated
with the independent variables have been removed, effectively setting the vi
of the independent variables to zero. The validity domains of the observations
are therefore bounded by nf -dimensional ellipsoids in the nx-dimensional ob-
servation space.

The effect that the introduction of independent interface variables has on the
residuals is illustrated in Figure 4.3. It shows the samemodel curve as Figure 4.2,
but here the variables x1 and x2 have been chosen as the independent variable
and the dependent variable respectively.

Calculating the value of ȳ for a given value of ū is usually referred to as device
simulation, being the modelling equivalent of performing an experiment with
the real device. Since the values of the independent variables are considered to
be known (ū = ū0), the number of variables in (4.1) is reduced to nf . The pro-
cess of calculating the value of ȳ is then equivalent to finding the root of the set
of nf non-linear equations in nf variables. The availability of efficient methods
for solving this type of problem (usually based on the Newton-Raphson algo-
rithm [32]), is a strong incentive for choosing this approach for calculating the
residuals. This argument is reinforced by the fact that these methods are easily
accessible as they are implemented in the form of general-purpose simulation
programs [1]. As a consequence the “device-simulation” residual (4.4) is used in
most model identification programs [6–10].

However, the ad hoc division of the interface variables into a dependent set and
an independent set leads to theoretical and computational problems. In par-
ticular, the distinction between the variables suggests a unidirectionality which
is rarely justifiable for most devices. In addition, the introduction of indepen-
dent variables results in a “weighting” of the observations. The weights, which
are applied to the residuals, are proportional to the gradient of the model func-
tion∇h(ū0). Hence, when the model is strongly non-linear the weights will be
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Figure 4.3: The nearest points for fixed independent variables.

spread over the observations in an highly uneven way. Consequently, the obser-
vations that are situated in the region where the model function is steep tend
to dominate the objective function, effectively eliminating the other observa-
tions from the objective function. This effect is shown in Figure 4.3, where
the residual of the second observation now outweighs the residual of the first
observation, even though the distances from the observations to the model
curve are approximately equal. These objections preclude the general use of
the device-simulation residual (4.4).

4.1.4 Constrainedminimization

Before introducing a method for the calculation of the residuals by directly
solving the constrained minimization problem (4.2), some relevant optimiza-
tion theory will be presented. We will consider the general problem of equality
constrained minimization:

minimize
x̄

F (x̄)

subject to f(x̄) = 0̄
(4.5)
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We suppose that the functions F ∈ IRnx → IR and f ∈ IRnx → IRnf are dif-
ferentiable and that first derivatives can be calculated.

The classical approach to equality constrained minimization is due to Lagrange
[35]. His contribution to the theory of constrained minimization was the dis-
covery that the solution of the constrained minimization problem (4.5) is an
unconstrained critical point of the scalar function

L(x̄, λ̄) = F (x̄)−
nf∑
i=1

λifi(x̄)

The function L ∈ IRnx × IRnf → IR is called the Lagrangian function, and the
nf -dimensional vector λ̄ is called the Lagrange multiplier vector.

The critical points of the unconstrained function L are those vectors (x̄, λ̄)
for which the gradient of L is zero. The gradient is zero where the partial
derivatives of L with respect to all variables are zero. Hence, a critical point
(x̄∗, λ̄∗) of L satisfies

f(x̄) = 0̄ (4.6)

∇F (x̄) =

nf∑
i=1

λi∇fi(x̄) (4.7)

These equations, which are referred to as the primal (4.6) and the adjoint (4.7)
equation, are the first-order conditions for the constrained minimum of F .

For this result to be valid it is necessary that at the constrained minimum x̄∗

the constraints act independently, i.e. the set {∇fi(x̄), i = 1, . . . , nf} is linearly
independent. If this regularity condition is satisfied, and we will henceforth as-
sume that this is the case for all x̄, the Lagrange multiplier vector λ̄∗ is uniquely
determined by equation (4.7) at x̄∗. However, if the model constraints are not
linearly independent in x̄∗, the Lagrange multipliers will not be unique or may
not even be finite.

The design of algorithms for solving (4.5) is usually governed by the first-order
conditions. Since (x̄∗, λ̄∗) is a root of (4.6) and (4.7), the obvious approach
would be to solve this system of (nx + nf ) equations in (nx + nf ) variables
directly. We could then use the algorithms that are available for device sim-
ulation. There are, however, two major objections to this approach. In the
first place, the first-order conditions are necessary but not sufficient condi-
tions for a solution of the constrained minimization problem (4.5). Not every
critical point of L necessarily corresponds to a constrained minimum of F . A
constrained maximum or a constrained saddle point of F will also contribute
a critical point to L. The (non-linear) system of equations (4.6) and (4.7) will
then have multiple roots. It is possible to formulate second-order conditions
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for a constrained minimum of F [37], to differentiate between the different
types of critical points once they have been identified. However, this ability to
reject an inappropriate root still leaves the problem of finding the desired root
unresolved.

The second objection to this approach is of a more practical nature. Efficient
methods for solving a set of equations (such as the Newton-Raphson method)
require the calculation of the first derivatives of these equations. Since the
adjoint equation (4.7) already contains first derivatives of the constraints, cal-
culation of the second derivatives of the constraints {∇2fi(x̄), i = 1, . . . , nf}
is required. When it is inconvenient to supply the second derivatives of the
model constraints, this method of calculating the residuals is at a substantial
disadvantage in comparison with the device simulation method, which does
not require the second derivatives.

Wewill therefore propose an algorithm that only requires the calculation of the
first derivatives of the model constraints. It avoids the explicit use of the first-
order conditions, instead, the constrained minimum is computed by working
directly with the problem functions F and f . In order to be efficient, the algo-
rithm is designed to take full advantage of the special characteristics of problem
(4.2).

4.1.5 The iteration equations

The special structure of problem (4.2) enables the direct calculation of the so-
lution vector x̄∗ when the model constraints f are linear in x̄. Not only is this
the case when the device model is in fact linear, but also when the distance of
x̄0 to the model subspace gets small enough for f(x̄) to be approximated by its
linearization in x̄0. This will often be the case in the final stages of the iden-
tification process, as the minimization of these distances is our main goal. We
will therefore linearize the constraints of problem (4.2) in an attempt to gen-
erate an algorithm in which a sequence of linearly constrained sub-problems
is solved. Our aim is to construct, in the limit of an iterative process, a lin-
early constrained sub-problem which has x̄∗ as a local minimum. The notation
x̄(k) (for k = 0, 1, . . .) will be used for the sequence of points calculated by the
iterative method, where it is usual to choose x̄(0) = x̄0.

Formathematical conveniencewe first reformulate the problem in a true quadratic
form:

minimize
x̄

F (x̄) = 1
2d(x̄0, x̄)

2

subject to f(x̄) = 0̄
(4.8)

This problem has the same solution x̄∗ as problem (4.2). To produce a linearly
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constrained sub-problem we linearize the constraints f in the point x̄(k) to get

minimize
x̄

F (x̄) = 1
2(x̄− x̄0)

tV (x̄− x̄0)

subject to f(x̄(k)) + Jx (x̄− x̄(k)) = 0̄
(4.9)

where Jx represents the Jacobian matrix, the nf × nx matrix of partial deriva-
tives of f with respect to x̄, evaluated at x̄(k).

This problem suggests an iterative method in which x̄(k+1) is chosen as the
solution of (4.9) and λ̄(k) as the corresponding multiplier vector of the linear
constraints. Hence, these vectors must satisfy the associated primal and adjoint
equations:

f(x̄(k)) + Jx(x̄
(k+1) − x̄(k)) = 0̄ (4.10)

V (x̄(k+1) − x̄0) = J t
xλ̄

(k) (4.11)

This system of linear equations has only one root (still assuming that Jx has full
rank). We can solve these equations for the correction step ξ̄(k) = (x̄(k+1) −
x̄(k)) and the next estimate of Lagrange multipliers λ̄(k):

ξ̄(k) = −V −1J t
x

(
JxV

−1J t
x

)−1
f(x̄(k))

−
{
I − V −1J t

x

(
JxV

−1J t
x

)−1
Jx

}
(x̄(k) − x̄0) (4.12)

λ̄(k) =
(
JxV

−1J t
x

)−1 {
Jx(x̄

(k) − x̄0)− f(x̄(k))
}

(4.13)

Equation (4.12) shows that the correction step ξ̄(k) can be divided into two
parts. This is illustrated in Figure 4.4. The first part ξ̄(k)n solves the linearized
primal equation, calculating the nearest point to x̄(k) (with respect to the met-
ric V ) on the constraint hyperplane. The second part ξ̄(k)t , the projection of the
vector (x̄(k) − x̄0) on the constraint hyperplane, then minimizes d(x̄0, x̄(k+1))
while keeping the linearized constraints satisfied. The two vectors are orthog-
onal with respect to the given metric V , i.e. ξ̄tnV ξ̄t = 0.

A particular feature of this algorithm is that it is controlled by the estimates
x̄(k) of x̄∗. The next estimate x̄(k+1) as well as the estimates of the Lagrange
multipliers solely depend on x̄(k). This means that if x̄(k) = x̄∗, so that ξ̄(k) = 0̄,
then λ̄(k) = λ̄∗. That is to say, if x̄ is correct, then any errors in λ̄ are annihilated.
Thus when the iterates x̄(k) converge to the solution x̄∗, the estimates λ̄(k)

will converge to the vector of Lagrange multipliers λ̄∗. However, in the next
subsection it will be shown that, instead of being a superfluous calculation, the
estimates of the Lagrange multipliers λ̄(k) are indispensable to the progress and
convergence of the algorithm.

An interesting result is obtained when the algorithm is applied to a problem for
which nx = nf , as is the case for the device simulation approach to calculating
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Figure 4.4: The correction step ξ̄(k).

the residuals (see Section 4.1.3). As the Jacobian matrix Jx is then a square
matrix, the formula for the correction step (4.12) reduces to

ξ̄(k) = −J−1
x f(x̄(k)) (4.14)

which is the formula for the correction step of the Newton-Raphson algorithm
for determining the root of the model constraints f(x̄). Even more interesting
from a practical point of view is that the same result (4.14) can be obtained by
setting those elements of V −1 in equation (4.12) to zero that correspond to the
independent interface variables. Hence, the method proposed here includes
the device simulation method as a special case.

4.1.6 Global convergence

To force global convergence on the minimization process some addition must
be made to the basic algorithm of (4.12). An obvious approach is to impose a
limit on the size of the correction step. This means that the correction step
ξ̄(k) as calculated in (4.12) is used as the step direction in the observation space

x̄(k+1) = x̄(k) + α ξ̄(k)

where α is a positive multiplier determining the step length. By controlling the
value of α at every iteration, global convergence of themethod can be achieved.
However, it is less obvious how the value of α must be manipulated to ensure
this. For instance, it is not possible to look for a sufficiently large reduction in
F as a criterion for choosing α, because the amount by which the constraints f
are violated must also be taken into account. These two competing aims must
therefore be combined in the form of a single “cost” function.
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Such a cost function together with a strategy for choosing α has been suggested
by Powell [38]:

Ψ(x̄, µ̄) = F (x̄) +

nf∑
i=1

µi|fi(x̄)|

The positive weights µi determine the tradeoff between the two aims. The
requirement is that the correction step for every iteration satisfies the following
condition

Ψ(x̄(k+1), µ̄) < Ψ(x̄(k), µ̄) (4.15)

This condition can be obtained if the function

Φ(α) = Ψ(x̄(k) + α ξ̄(k), µ̄)

decreases initially when α is made positive. Detailed analysis shows that this
will be the case if the inequality

µi ≥ λ
(k)
i (4.16)

is satisfied. Moreover, global convergence is assured when µ̄ is chosen large
enough.

Some indication of the required scale of µ̄ can be derived from the estimates
of the Lagrange multipliers. This is acknowledged by Powell, who refers to
a theorem which states that condition (4.16) must hold for all iterations [38].
However, this choice of µ̄ is difficult to ensure, because the sequence λ̄(k)

(k = 1, 2, . . .) cannot be determined a priori. A large constant vector µ̄ is also
inefficient, because on most iterations µ̄ will be much larger than necessary to
obtain convergence. If too much weight is given to satisfying the constraints,
the path of the iterates x̄(k) is forced to follow the curved model subspace too
tightly, which needlessly reduces the step size. Therefore, Powell recommends
the following scheme for choosing the value of µ̄. On the first iteration we let
µi = |λ(1)

i |. On all other iterations we apply the formula

µ
(k+1)
i = max

(
|λ(k)

i |, 12(µ
(k)
i + |λ(k)

i |)
)

The main purpose of the step size reduction is to prevent divergence, hence we
may accept any value of α that satisfies condition (4.15). We have developed the
following procedure for obtaining a suitable value for α. The full step α = 1
is tried first. Only when this value does not suffice, we use a one-dimensional
minimization technique to determine an acceptable value for α, which is now
bracketed between 0 < α < 1. Since Φ(α) is not a differentiable function
we have opted for a golden-section search [32]. The minimum of Φ(α) needs
not to be determined very accurately since the extra computations required are
seldom justified by a significant further reduction in the number of iterations.
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Experiments have shown that this is a very effective and above all an efficient
method to prevent divergence of the algorithm. For all constraint functions
that have been tried—which includes models for devices such as diodes, bipolar
transistors, and field-effect transistors—the algorithm converged satisfactorily,
even from remote initial points. However, because the value of µ changes on
each iteration, global convergence of the given method cannot be guaranteed.
An implementation of this method must therefore include a test to detect di-
vergence (or excessively slow convergence), for example by specifying an upper
bound on the number of iterations of the algorithm.

4.1.7 Multiple solutions

It follows from (4.12) and (4.13) that all points x̄ that satisfy the primal and
adjoint equation of problem (4.8)

f(x̄) = 0̄
V (x̄− x̄0) = J t

xλ̄
(4.17)

are a fixed point of the algorithm, i.e. lead to ξ̄ = 0̄. Therefore, it seems that
the proposed method offers no improvement in this respect when compared
to the method of solving these equations directly. Fortunately however, not
all roots of (4.17) are points of convergence of the algorithm. Since it is a de-
scent method, the step direction tends to veer away from constrained maxima
and saddle points, so that only a constrained minimum is a possible point of
convergence of the algorithm.

However, there still exists the possibility thatmultiple localminima are present.
This is often the case when the curvature of the model function is large com-
pared to the distance between x̄0 and the model curve, as may be the case in
the initial stages of the identification process. This is illustrated in Figure 4.5,
where the points x̄∗a and x̄∗b are both constrained minima of d(x̄0, x̄). There is
no local test to determine if the foundminimum is the global minimum. Hence,
no minimization technique can ever guarantee to find the global minimum of
a general problem. However, the possibility of multiple values for the same
residual does not lead to theoretical problems, as long as a residual is obtained
that is finite and well defined. Nevertheless, we will have to take this possi-
bility into consideration when using the calculated residuals in the objective
function, as it has some implications for the mathematical properties of the
objective function. These will be accounted for in the next section.

4.2 Location and dispersion

The next step in the evaluation of the mode selection criterion (3.5) is the mini-
mization of the least-squares (LS) objective function C2 (3.2) with respect to the
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parameters p̄ for a particular choice of the selection vector s̄. This is equivalent
to calculating the location p̄∗(s̄) of the identification space PS spanned by the
selected subset S of the set of observations X . The calculation of the location
then enables us to evaluate the dispersion δ2(s̄) (3.3), which plays such a crucial
role in the MODES algorithm.

The minimization of the objective function C2 can be formulated as a standard
non-linear LS problem. Minimization algorithms that are based on the Gauss-
Newtonmethod (which is also referred to as the generalized least-squaresmethod)
are generally recognized to be the most appropriate for this type of problem
[30]. However, the Gauss-Newtonmethod in its original form does not guaran-
tee convergence, which is clearly not acceptable. In this section, we will derive
the Gauss-Newton method from the more general Newton method. This al-
lows us to analyse the algorithm in detail to identify the cause of its instability.
Based on the results of this analysis, several modifications to theGauss-Newton
algorithm will be introduced that ensure its stability.

4.2.1 Formulation of the objective function

For a particular choice of s̄, i.e. the set S , the objective function is given by

C2(p̄) =
N∑
i=1

siϵi(p̄)
2 (4.18)



Location and dispersion 55

This function can be written in a form that is better suited to minimization.
First of all, to avoid discontinuous derivatives, the square root in the definition
of ϵ (4.3) must be canceled by the square in (4.18)

C2(p̄) =
∑
x̄i∈S

(x̄∗i − x̄i)
tVi(x̄

∗
i − x̄i) (4.19)

where the vectors x̄∗i depend on the parameters. The shorthand notation
∑

x̄i∈S
stands for summing only over the observations in X for which si = 1. This ob-
jective function has the same minimum point p̄∗ as (4.18). Assuming for the
moment that each Vi is a diagonal matrix, the objective function can again be
written as the sum of squares

C2(p̄) =
∑
x̄i∈S

nx∑
j=1

(
x∗ij − xij

vij

)2

The range of the second sum shows that each observation contributes nx terms
to C2, while the dimension of the range of the model constraints fM is only
nf . This means, that the terms of C2 are dependent, and can be replaced by a
smaller number of independent terms. To derive an expression for these inde-
pendent terms, we reconsider the adjoint equation of (4.17) at the solution of
problem (4.2) for the ith observation x̄i

Vi(x̄
∗
i − x̄i) = J t

xλ̄
∗
i

where the Jacobian matrix of the model constraints Jx is evaluated at x̄∗i . Since
Jx is assumed to be of full rank, the vector of Lagrange multipliers λ̄∗

i is unique.
The corresponding term in (4.19) can then be rewritten as

(x̄∗i − x̄i)
tVi(x̄

∗
i − x̄i) = λ̄∗t

i (JxV
−1
i J t

x)λ̄
∗
i (4.20)

This expression must now be decomposed in a sum of squares. As the square
matrix (JxV −1J t

x) is positive definite, there exists a similarity transformation

(JxV
−1J t

x) = RDRt

where the columns of the orthogonal matrixR are the normalized eigenvectors
of (JxV −1J t

x), and the entries of the diagonal matrix D are the corresponding
positive real eigenvalues. Equation (4.20) thus becomes

λ̄∗t
i (RDRt)iλ̄

∗
i = (D1/2Rtλ̄∗)

t

i(D
1/2Rtλ̄∗)i

∆
= ρ̄tiρ̄i (4.21)

substituting the nf -dimensional vector ρ̄i for the vector (D1/2Rtλ̄∗)i. Hence,
we have diagonalized the quadratic form (4.20) under an orthogonal change of
variables.
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According to (3.5) the number of observations in S is given by N (s̄). The vec-
tors ρ̄i can thus be combined in an Nnf -element vector

r̄ =

 ρ̄1
...

ρ̄N


Using this last result in (4.19) yields the final expression for the objective func-
tion

C2(p̄) = r̄tr̄ =
N∑
i=1

ρ̄tiρ̄i =
N∑
i=1

nf∑
j=1

ρij
2 (4.22)

where each observation contributes exactly nf terms to the sum. The mini-
mization of (4.22) is a standard non-linear LS problem.

4.2.2 Newtonmethods for unconstrainedminimization

In order to provide a framework for discussing the characteristics of the Gauss-
Newton method, we will digress slightly at this stage and first consider Newton
minimizationmethods in general. In this section, thesemethodswill be derived
for a general unconstrained objective function of a set of parameters F (p̄).

Consider an iterativeminimization process which generates a sequence of points
{p̄(k)} such that the (k + 1)st point is related to the kth point by the equation

p̄(k+1) = p̄(k) +∆p̄ (4.23)

where ∆p̄ is referred to as the correction step. Assuming that the objective
function is at least twice differentiable in the point p̄(k) then, in the neigh-
bourhood of the point p̄(k), the objective function can be approximated by the
truncated Taylor-series expansion

F (p̄(k) +∆p̄) ≈ F (p̄(k)) + ∆p̄tḡ + 1
2∆p̄tH∆p̄ (4.24)

where the gradient ḡ = ∇F (p̄(k)) and the Hessian matrix H = ∇2F (p̄(k)) are
evaluated in the current point. If this quadratic function in ∆p̄ possesses a
bounded minimum, it will satisfy the following system of equations

H∆p̄ = −ḡ (4.25)

Equations (4.23) and (4.25) define the standard Newton method.

As the iterates p̄(k) approach the minimum point p̄∗ of F (where the gradient
ḡ = 0̄), the quadratic approximation (4.24) becomes progressively more accu-
rate. Consequently, from points in the neighbourhood of the minimum, the
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Newton step (4.25) should provide a progressively increasing reduction in the
error ∥p̄(k) − p̄∗∥. In fact, it can be shown that the Newton method should
converge quadratically in the neighbourhood of a (single) solution. However,
as the Newton method is based on a local approximation to F , global conver-
gence of the Newton method is not guaranteed. To ensure global convergence
some modifications will have to be made to the basic Newton algorithm.

If the objective function F is continuous and unimodal and the correction step
satisfies the relation F (p̄(k+1)) < F (p̄(k)) for all iterations, then convergence of
the sequence {p̄(k)} to the minimum p̄∗ is guaranteed. Hence, each correction
step ∆p̄ should satisfy the condition of actually bringing about a decrease in
the value of F . However, the Newton correction step given by (4.25) may fail
this condition. Therefore, instead of using the full correction step, the result of
(4.25) will be interpreted as a direction of search, replacing the iteration formula
(4.23) by

p̄(k+1) = p̄(k) + α∆p̄

where the multiplier α is referred to as the step length. An iteration will now
produce a reduction in the value of F if the step length α is sufficiently small
and the direction of ∆p̄ is a direction of descent.

A search direction is a descent direction for the objective function F if its in-
ner product with the local gradient ḡ · ∆p̄ is negative [35]. For the direction
of the Newton step this means that the inequality ḡtH−1ḡ > 0 must hold,
which can only be guaranteed if the Hessian matrix H is positive definite in
p̄(k). Although the Hessian matrix will be positive definite in a neighbourhood
of the (strong) minimum p̄∗, there is no way to ensure that H will be positive
definite for all iterates p̄(k). Hence, in order to obtain a reliable minimization
method, the Hessian matrixH in equation (4.25) must be replaced by a related
but guaranteed positive definite matrix G

G∆p̄ = −ḡ

For the convergence rate of the original Newton method to be retained, the
matrix G should approach the true Hessian matrix H when p̄(k) approaches
the minimum p̄∗. Yet, this constraint on the choice of G still leaves room for a
multitude of variations on the Newton method, each with a distinct approach
to approximating the Hessian of the objective function.

4.2.3 TheGauss-Newtonmethod

TheGauss-Newtonmethod is aNewtonmethod that is dedicated to solving LS
problems. This minimization method is designed to exploit the special struc-
ture of the Hessian matrix of a LS objective function to give improved com-
putational efficiency and reliability. In this section, we will discuss the most
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important aspects of this approach by deriving the iteration equations for our
objective function C2(p̄) (4.22).

To derive an expression for the gradient ḡ of the function C2, we will first con-
sider its elements, for a = 1, 2, . . . , np

ga =
∂C2
∂pa

= 2
N∑
i=1

ρ̄ti
∂ρ̄i
∂pa

(4.26)

As is shown in Appendix B, the partial derivatives ∂ρ̄i/∂pa are given by

∂ρ̄i
∂pa

= −
(
D−1/2Rt

)
i

∂f

∂pa

∣∣∣∣
x̄=x̄∗

i

+ (Sa)i ρ̄i (4.27)

where Sa is a skew-symmetric matrix comprising the second derivatives of the
model constraints with respect to pa and x̄. Substituting this expression in
(4.26) gives for the elements of the gradient

∂C2
∂pa

= −2
N∑
i=1

ρ̄ti

(
D−1/2Rt ∂f

∂pa

)
i

+ ρ̄ti (Sa)i ρ̄i

As the matrix Sa is skew symmetric, all terms of the form ρ̄tSaρ̄ are zero. Thus,
we have an exact expression for the gradient of C2 using only the first derivatives
of the model constraints with respect to x̄ and p̄, the Jacobian matrices Jx and
Jp respectively

ḡ = −2
N∑
i=1

ρ̄ti

(
D−1/2RtJp

)
i
= 2Atr̄ (4.28)

where theNnf ×np matrixA stands for the component of the Jacobian matrix
of r̄ with respect to p̄ that contributes to the gradient of the objective function.

To evaluate the elements of the Hessian matrix of C2, we take an additional
partial derivative of expression (4.26), for b = 1, 2, . . . , np

Hab =
∂2C2

∂pa∂pb
= 2

N∑
i=1

∂ρ̄i
t

∂pa

∂ρ̄i
∂pb

+ 2
N∑
i=1

ρ̄ti
∂2ρ̄i

∂pa∂pb
(4.29)

The elementsHab of theHessianmatrix not only depend on the first derivatives
but also on the second derivatives of the model constraints: the second sum on
the right-hand side of (4.29), and those components of the first sum that contain
the matrixes (Sa)i or (Sb)i. However, all second-derivative terms in (4.29) are
multiplied by the residual vector ρ̄i.

The Gauss-Newton method is based on the assumption that all terms of (4.29)
that are multiplied by the residuals may be neglected, hence eliminating the
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need for evaluating the second derivatives of the model constraints. For a suc-
cessful model this approximation of the Hessian becomes increasingly more
accurate when the solution is approached, and ∥r̄∥ becomes small. Applying
the Gauss-Newton approximation to the Hessian of C2 gives for the elements
of H

Hab ≈ Gab = 2
N∑
i=1

[(
D−1/2Rt ∂f

∂pa

)t (
D−1/2Rt ∂f

∂pb

)]
i

Using the more concise notation introduced in (4.28), the Gauss-Newton ap-
proximation G of the Hessian matrix of C2 can be expressed as

G = 2AtA

which shows an additional advantage of this approximation: if the matrixA has
full rank, then the matrix G will be positive definite.

The correction step ∆p̄ for improving the approximate solution p̄(k) can now
be formulated as the solution of the following set of equations

(AtA)∆p̄ = −Atr̄ (4.30)

where A and r̄ are evaluated at p̄(k). These equations are generally known as
the normal equations of the LS problem, while the corresponding correction step
is referred to as the Gauss-Newton step.

The Gauss-Newton method calculates the optimum correction step on the ba-
sis of a linearization of the model constraints with respect to x̄ and p̄ in x̄∗i
(i = 1, . . . , nx) and p̄(k). From this wemay conclude that when only first deriva-
tives of the model constraints are available, the Gauss-Newton method is def-
initely the best minimization method available. Moreover, when the model
constraints are in fact linear in x̄ and p̄, the Gauss-Newton method will mini-
mize the objective function in a single step. In any other case, the convergence
rate of the Gauss-Newton method depends on the final accuracy of the Hes-
sian approximation G. Usually, the approximation is accurate enough for this
method to exhibit super-linear convergence in the neighbourhood of the solu-
tion.

4.2.4 Ill-conditioned problems

Solving the normal equations (4.30) directly does not provide a reliable method
for obtaining the Gauss-Newton step. If the matrix (AtA) is singular or nearly
singular, the computational problem of solving ∆p̄ from (4.30) becomes ill-
conditioned or even impossible to solve. To quantify the condition of the com-
putational problem we introduce the singular-value decomposition of A

A = QDBt
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The columns q̄i and b̄i (i = 1, . . . , np) of the orthogonal matrixes Q and P
are the left and right singular vectors of A, and the diagonal elements di of
the diagonal matrix D are its singular values. As A represents the sensitivity
of the objective function with respect to the parameters, the decomposition
allows us to determine directions in the parameter space that do not contribute
much to reducing the objective function. These “degenerate” directions are the
directions of the right singular vectors that are associated with singular values
that are relatively close to zero.

The Gauss-Newton step can be written as a vector sum of the right singular
vectors

∆p̄ = −BD−1Qtr̄ = −
np∑
i=1

q̄i · r̄
di

b̄i (4.31)

which shows that the size of each contribution is inversely proportional to the
singular value associatedwith its direction. When thematrixA is ill-conditioned,
the resulting Gauss-Newton step will be dominated by large components in
the degenerate directions. As the rounding errors that arise during the calcula-
tion of∆p̄ will especially affect the precision of these components, the Gauss-
Newton step tends to be ill-determined when A is ill-conditioned. As a result,
the direction of the calculated Gauss-Newton step may not be a descent di-
rection, and convergence of the minimization process is no longer guaranteed.
Moreover, (4.31) also shows that the Gauss-Newton step is not even defined
when the matrix A is exactly singular, as then one or more singular values di of
A will be zero.

As ill-conditioned problems are the rule rather than an exception, we must
devise amethod for calculating the correction step that handles ill-conditioning
explicitly. This can be achieved by basing our method on equation (4.31). Since
by computing the singular-value decomposition of A we can actually identify
the degenerate directions, we can directly eliminate these directions from the
search direction. This yields

∆p̄ = −BD−1
r Qtr̄ = −

nr
p∑

i=1

q̄i · r̄
di

b̄i (4.32)

where nr
p ( ≤ np) is the number of non-degenerate directions. The matrixD−1

r

denotes the reduced inverse of D, which is obtained by zeroing the (np − nr
p)

diagonal elements of D−1 that are the reciprocals of small valued elements in
D. If enough elements ofD−1 are zeroed in this way, the direction of the vector
∆p̄ is guaranteed to be a well-defined descent direction. Wemust, however, ex-
ercise some discretion in deciding at what threshold to zero the inverse singular
values.

An objectivemeasure for the condition of the problem is given by the condition
number c of the matrix A, which is defined as the quotient of its largest and
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smallest singular values

c =
dmax

dmin

The condition number will be large when the matrix is ill-conditioned, or even
infinite when the matrix is singular. Zeroing elements of D−1 means adjusting
the effective condition number of the matrix A to an acceptable limit.

The inner product of the search direction with the true gradient of the ob-
jective function must always be negative. However, when the matrix A is ill-
conditioned and the search direction is almost orthogonal to the calculated
gradient, the inner product of the search direction and the true gradient may
actually be positive. Further analysis has shown that a useful upper bound for
the condition number of A is then given by the reciprocal value of the relative
accuracy with which the elements of A and r̄ are calculated (usually the square
root of the machine’s floating point precision). If, for example, their values are
known to about six significant figures, then the maximum condition number
that can be tolerated is in the order of 106. Hence, the reciprocals of all sin-
gular values di for which the inequality di < 10−6 dmax holds should then be
zeroed.

Elimination of the degenerate directions from the direction of search effec-
tively reduces the dimension of the parameter space. The correction step given
by the iteration equation (4.32) can be interpreted as the projection of the
Gauss-Newton step onto this reduced space. A minimization method that uses
(4.32) will accordingly be referred to as a reduced Gauss-Newton (RGN) method.

4.2.5 Scaling of the parameters

For most device models the units of the parameters differ widely, often many
orders of magnitude. It may therefore be necessary to scale the parameters,
transforming them from their original representation—which may reflect the
physical nature of the problem—to parameters that have certain desirable prop-
erties in terms of the identification process.

The original Gauss-Newton method can be shown to be invariant under linear
transformations of the parameters [35]. However, this theoretical result does
not hold for practical implementations, such as the RGN method. The RGN
method modifies the Gauss-Newton direction on the basis of the condition
number of the matrix A. As A represents the sensitivity of the residuals to a
unit change in the parameter values, scaling of the parameters will influence the
condition number of A by implicitly redefining these units. As a consequence,
an unbalanced scaling of the parameters may cause some of them to be need-
lessly eliminated from the identification process. Hence, the reliability of the
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RGNmethod (or any other minimization method for that matter) depends on
the implementation of an adequate scaling technique.

As it is the purpose of identification to reduce the initial uncertainty in the
values of the model parameters, it seems natural to express the values of the
parameters using this initial uncertainty as the reference. A straightforward
implementation of this idea requires the specification of this initial uncertainty
in the form of a lower and an upper bound on the value of each parameter

pli ≤ pi ≤ pui , i = 1, . . . , np

These bounds on the parameters should always enclose the identification space
PX which represents the lower bound on the uncertainty in the parameter space
based on the observational data. The scaled parameters p′i are given by

p′i =
pi

|pui − pli|
(4.33)

where a fixed scaling factor maps the range of each parameter to a range of
length one.

An alternative scaling technique is obtained when the current value of the pa-
rameter p(k)i is used as the reference. Here, the aim is to scale the parameters
in such a way that at the beginning of every iteration the scaled parameters all
have a value of one, which means that the correction step can be interpreted as
a relative change in the parameter values. This dynamic approach to scaling is
best implemented as

p′i =


pi/p

(k)
i if pli < p

(k)
i < pui

pi/p
l
i if p

(k)
i ≤ pli

pi/p
u
i if p

(k)
i ≥ pui

(4.34)

where the bounds on the parameters are now applied to the scaling factors.

Obviously, when the range of a parameter includes zero, the dynamic scaling
of (4.34) cannot be used. For the rest, the choice between these two scaling
techniques depends on the range of the parameter. Static scaling (4.33) is par-
ticularly effective when the range of a parameter is relatively small. When the
value of a parameter is allowed to change several orders of magnitude in the
cause of the minimization process, a fixed scaling factor may not be adequate,
and the dynamic scaling of (4.34) should be used instead.

4.2.6 The directional search

Although the direction of the correction step is guaranteed to be a descent di-
rection, we do not know how far the found descent direction extends. Initially,
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Figure 4.6: A typical discontinuity in the objective function.

it is reasonable to expect that the assumptions that were used to determine the
correction step in the first place are valid, i.e. that the current point p̄(k) is in the
neighbourhood of the solution p̄∗ where the Gauss-Newton approximation is
sufficiently accurate. The given correction step (4.32) will then yield a decrease
in the value of the objective function. Hence, the step length α = 1 should
be tried first, and if the objective function is sufficiently reduced, this correc-
tion step can be safely accepted. The super-linear rate of convergence of the
Gauss-Newton method in the neighbourhood of the solution is thus retained.

If the trial of α = 1 is not successful, we must assume that the current point is
far from the solution, and a directional searchmust be carried out to reduce the
step length. The aim of this directional search is to follow the search direction
∆p̄ as far as possible in order to provide the maximum amount of decrease in
the value of the objective function. One obvious approach is to choose the step
length by minimizing

C2(p̄(k) + α∆p̄), 0 < α < 1 (4.35)

with respect to α. The minimum of (4.35) is guaranteed to exist when the func-
tion is continuous. However, when the objective function can be expected to
have occasional discontinuities this approach may fail.

Discontinuities in C2 occur when, for a particular value of the parameters, the
calculation of one of the residuals switches between two possible solutions, as
was shown in Figure 4.5. The disrupting effect that such a “residual switch”
can have on the directional search is illustrated in Figure 4.6, where the discon-
tinuity at α′ introduces a local minimum in the function (4.35). Minimization
algorithms that only use evaluations of the function value of (4.35) may get stuck
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on this type of discontinuity, whereas these discontinuities are not stationary
points of the objective function (i.e. ∇C2(p̄(k) + α′∆p̄) ̸= 0̄). Consequently,
even though the discontinuities in C2 are usually small in size and number, they
can significantly affect the reliability of the identification process.

If the function C2 is not continuous, a correction step that temporarily increases
the function value may be required to bring us nearer to the solution. Hence,
in the presence of discontinuities, the function value alone does not provide a
suitable criterion. In order to distinguish between a discontinuity of the type
shown in Figure 4.6 at α′, and the intended minimum at α∗, we must evaluate
the derivative of (4.35) with respect to α

dC2
dα

= ∇C2(p̄(k) + α∆ p̄) ·∆p̄ (4.36)

Only at the stationary point α∗ does the sign of (4.36) change. Therefore, in-
stead of minimizing (4.35) directly, the directional search should determine the
root of (4.36).

To determine the initial bracket on the root of (4.36) we will, for the moment,
assume that C2 has only a single stationary point at p̄∗, so equation (4.36) has
at the most one root in the interval 0 < α ≤ 1. As ∆p̄ is a descent direction,
the lower bound on the root is always α = 0, but the suitability of α = 1
as the upper bound depends on the sign of (4.36). If the sign is positive for
α = 1 we conclude that the interval contains the root, and the directional
search can commence. However, if the sign is negative we conclude that the
interval does not contain a root. In this case, the step length should not be
reduced, accepting a temporary increase in the value of the objective function
in order to skip the discontinuity.

The directional search does not need to be very exact to get good conver-
gence properties for the overall method. However, the root of (4.36) should
be isolated using a method that keeps the root strictly bracketed, such as the
bisection method or the more sophisticated Van Wijngaarden-Dekker-Brent
method [32]. The lattermethod combines the reliability of the bisectionmethod
with the efficiency of a second-order method when appropriate. After conver-
gence of the directional search, the value of the smallest bracket is chosen for
α. This value of α (whichmust obviously be larger than zero) ensures a decrease
in the value of C2 if the objective function is continuous after all.

4.2.7 Bracketing the location

The reliability of the directional search rests on the assumption that the objec-
tive function has only a single stationary point. However, it is not uncommon
for C2 to have multiple stationary points besides the one that we are searching
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for. As a result, the iterations may get trapped in the “collecting region” of
another strong minimum of C2. Hence, we should, whenever possible, confine
the directional search to the neighbourhood of the required minimum of C2,
that is, the location of the identification space PS .

To determine amore stringent upper bound on the smallest root of (4.36), we re-
quire some indication of the scale of theminimization problem. The bounds on
the parameters were introduced exactly for this purpose. These bounds bracket
the identification spacePX , a region in the parameter space which contains the
required minimum. Moreover, in most cases, any additional strong minima of
C2 lie well outside PX .

The directional search algorithm is easily modified to use the available scaling
information. If the correction step ∆p̄ crosses any bounds, then the nearest
bound determines an upper bound on the step length β ≤ 1. The bounded
correction step β∆p̄ then replaces the initial correction step ∆p̄ in the direc-
tional search. However, we will have to make an exception for bounds that are
exactly satisfied for the current point to ensure that β > 0. This means that
when the previous iteration landed the current point on a bound, this bound
should be crossed if the search direction, evaluated on this bound, points out-
side the bracketed region.

4.2.8 The convergence criterion

Any iteration method requires a criterion to determine when the sequence of
intermediate solutions has converged. Of course, theminimum is characterized
by the gradient ḡ(p̄∗) being zero, but as this point will never be reached exactly,
we need to formulate a less strict criterion. Hence, the sequence should be
considered to have converged when the norm of the gradient is less than some
specific value. It is, however, difficult to specify an objective upper bound for
the norm of the gradient. The same objection holds for a convergence crite-
rion based on the correction step ∆p̄. Fortunately, we can obtain an objective
reference for the change in the objective function ∆C2.

In the neighbourhood of the solution the quadratic approximation of the ob-
jective function (4.24) will be accurate. For the predicted reduction in C2 we
may then write

∆C2 = C2(p̄)− C2(p̄+∆p̄) = −∆p̄tḡ − 1
2∆p̄tH∆p̄

For C2(p̄) = r̄tr̄ and using the Gauss-Newton approximation, this expression
reduces to

∆C2 = r̄tA(AtA)−1Atr̄
RGN
= r̄tQIrQ

tr̄ (4.37)
where Ir is the reduced identity matrix (DrD

−1
r ). When the gradient ḡ = 2Atr̄

approaches zero,∆C2 will approach zero as well. Hence, any bound on∆C2 also



Mode selection 66

specifies a bound on the gradient ḡ. We can, however, determine a reasonable
convergence criterion for ∆C2.

The accuracy with which the objective function can be calculated is known,
and depends on the accuracy of the residuals. It makes no sense to continue
the iteration process when the reduction that can be made in the value of the
objective function is within the tolerance on that value. Therefore, at each
iteration of the algorithm the value of ∆C(k)

2 is evaluated. The minimization
process is considered to have converged when the following condition is met

|∆C(k)
2 | ≤ tolR C(k)

2 + tolA N (4.38)

where tolR and tolA are the relative and absolute tolerances on the squares of
the residuals ϵ2. Furthermore, this convergence criterion implicitly defines a
convergence criterion for the correction step, since it specifies when the pro-
posed change in the values of the parameters is no longer significant.

4.3 Mode selection

We are now ready to consider the problem of partitioning the set of observa-
tions X to find the subset that satisfies the mode selection criterion (3.5). The
MODES method sequentially removes one observation from the current set
S . Each step in the selection space is selected with the aim of minimizing the
dispersion δ2(s̄).

The obvious approach to step selection would be to derive the necessary in-
formation by actually evaluating δ2 in the neighbouring points. It was shown
in Section 3.4.4 that this results in an algorithm that has a time complexity
of only O(N2). More precisely, the maximum number of evaluations of δ2 is
1
2(N

2+N). However, as each evaluation of δ2 involves the minimization of the
C2 objective function, the computational effort required for this algorithm can
still be considerable. This was confirmed by experiments, which showed that
this step selection procedure is not fast enough to be practical in solving large
problems. We must therefore devise a step selection procedure that is more
efficient, but without seriously compromising the reliability of the MODES al-
gorithm. The answer to this problem lies in the use of derivative information.

4.3.1 Sensitivity analysis

The removal of an observation x̄i from the current set S (by setting si = 0)
alters the value of the dispersion to

δ2(s̄)|si=0 =

√
C2 (p̄∗)−∆iC2

N (s̄)− 1
(4.39)
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where∆iC2 denotes the reduction in the minimum value of the objective func-
tion C2. The step selection procedure must minimize (4.39) with respect to i.
This is equivalent to maximizing ∆iC2 with respect to i.

The removal of an observation affects theminimum value of the objective func-
tion in two ways. First, the residual associated with the observation is removed
from the sum of squares (4.22). Second, the minimum point p̄∗—the location of
the identification space—will shift to a different location, changing the resid-
uals of all remaining observations. Now instead of actually calculating this
change in p̄∗ by minimizing C2, we will derive an approximation for its con-
tribution to∆iC2. This approximation will be based on the linearization of the
model constraints in the current location p̄∗, as this information is available
after the minimization of C2 for the current set of observations.

According to Section 4.2.3, the Gauss-Newton method will minimize the ob-
jective function in a single step when the model constraints are linear. Hence,
the change in location can be approximated by solving the normal equations
(4.30) after eliminating the elements of the residual vector r̄ and the derivative
matrix A that are associated with the observation x̄i. The current r̄ and A are
thus divided in two parts:

r̄ =

[
r̄0
ρ̄i

]
, A =

[
A0

Ai

]

where the elements belonging to the observation x̄i are placed in ρ̄i and Ai.
The change in location is then given by

∆p̄∗ = −
(
At

0A0

)−1
At

0r̄0

Here it is assumed that the matrix A0 is well-conditioned. At a later stage the
results will be modified to handle ill-conditioned problems reliably. The effect
of the Gauss-Newton correction step on the value of the objective function was
already derived in Section 4.2.8. By substituting r̄0 and A0 in equation (4.37),
the reduction in the minimum value of the objective function can be expressed
as

∆iC2 = ρ̄tiρ̄i + r̄t0A0(A
t
0A0)

−1At
0r̄0 (4.40)

The first term represents the direct effect of removing the ith residual, while
the second term accounts for the effect of the change in location ∆p̄∗ on the
remaining residuals.

The evaluation of (4.40) requires the calculation of the inverse of the np × np

matrix (At
0A0) for each of the N observations in S . Especially when the iden-

tification problem is ill-conditioned, this can be a substantial computational
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burden. Therefore, we will seek to express (4.40) in a form that can be evalu-
ated more efficiently. For this purpose, we apply the equalities

AtA = At
0A0 +At

iAi

Atr̄ = At
0r̄0 +At

iρ̄i =|p̄=p̄∗ 0̄ (4.41)

and rewrite (4.40) as

∆iC2 = ρ̄ti

[
I +Ai(A

tA−At
iAi)

−1At
i

]
ρ̄i (4.42)

To obtain the inverse of themodifiedmatrix (AtA−At
iAi)we use the Sherman-

Morrison-Woodburry formula [1], which gives the following relationship

(AtA−At
iAi)

−1 =

(AtA)−1 + (AtA)−1At
i

[
I −Ai(A

tA)−1At
i

]−1
Ai(A

tA)−1 (4.43)

Since the inverse of the matrix (AtA) will already have been calculated, the
evaluation of (4.43) only requires the inversion of the nf × nf matrix between
the square brackets. The substitution of (4.43) in (4.42), and a reordering of the
terms, yields

∆iC2 = ρ̄ti

[
I −Ai(A

tA)−1At
i

]−1
ρ̄i (4.44)

This equation1, which uses a Gauss-Newton correction step to account for the
change in location, can easily be modified to use a RGN correction step. The
inverse of the matrix (AtA)must then be determined in the reduced parameter
space

(AtA)−1 = BD−1
r D−1

r Bt

Further, the matrix Q of left eigenvectors of A is divided into two parts along
the same lines as A itself[

A0

Ai

]
=

[
Q0

Qi

]
DBt =⇒ Ai = QiDBt

Substitution in (4.44) finally yields the desired result

∆iC2 = ρ̄ti

[
I −QiIrQ

t
i

]−1
ρ̄i (4.45)

This approach to the problem of ill-conditioning is based on the assumption
that the partial matrixA0 has approximately the same degenerate directions as
the full matrix A, which is usually the case. However, if this assumption is not
valid—when the elimination of an observation from S adds a degenerate direc-
tion to A—then the matrix

[
I −QiIrQ

t
i

]
can still be ill-conditioned, and the

evaluation of (4.45) may fail. When this happens, we must revert to equation
(4.40), and calculate the singular-value decomposition of the matrix A0.

1The reader may notice the correspondence between equation (4.44) and the iteration equa-
tions of the so-called recursive least-squares method for sequential observations, a method for
estimating the properties of a dynamic system in real time [39].
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4.3.2 The algorithm

The flow diagram in Figure 4.7 shows how the sensitivity analysis is incorpo-
rated in the MODES algorithm. After each minimization of C2 with respect to
p̄, the solution is tested for compliance with the mode selection criterion (3.5).
If the solution fails this test, a sensitivity analysis is performed to select the
next point in the selection space. The sensitivity analysis predicts the reduction
in the minimum value of the objective function for each step in the selection
space (of length one). The optimum step is then selected by maximizing the
predicted reduction over the current set of observations S . However, as the
prediction was based on the linearization of the model constraints, it will usu-
ally have to be corrected by minimizing C2 before the step selection procedure
can be repeated—the sensitivity analysis requires the gradient of the objective
function with respect to p̄ to be zero, as is expressed in equation (4.41). The re-
sulting prediction–selection–correction loop can be interpreted as the method
of steepest descent [35] in the selection space, with the exception that the step
length is always one.

When the step direction is selected on the basis of the sensitivity analysis, then
for each step we save N evaluations of δ2, but at the extra cost of calculating
the set ofN sensitivities {∆iC2}. However, the calculation of a sensitivity∆iC2
requires far less computational effort than theminimization of C2 for a different
s̄. The result is a highly efficient identification method, which at the most
requires N full minimizations of the LS objective function C2.

As the algorithm sequentially reduces the extent of the identification spacePS ,
the changes in location ∆p̄∗ will also become smaller when the algorithm pro-
gresses. Therefore, when the minimum point of the previous minimization is
used as the initial estimate of the solution of the next minimization, the subse-
quent minimizations will become increasingly easier to solve, requiring less and
less iterations of the RGN algorithm (see the final paragraph of Section 4.2.3).
In practice, we often find that the lion’s share of the computing time is spent
in the first minimization (for s̄ = 1̄).

The size of∆p̄∗ also determines the reliability of the step selection procedure.
The expected reductions in the minimum value of the objective function∆iC2
were derived for linearized model constraints; an approximation which is only
accurate for small parameter deviations around the current location p̄∗. There-
fore, the changes in location per selection step must be kept small. This con-
dition is usually fulfilled when N is large, as then the effect of the removal of
a single observation will be small. Alternatively, when N is small, for exam-
ple in final stages of the selection process, but the extent of the identification
space PS has also become small, then any further changes in location will again
be small. Hence, the step selection procedure will be reliable when the total
number of observations N is large, and a considerable section of the set of ob-
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Figure 4.7: Flow diagram of the MODES algorithm.
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servations lies within the validity domain of the model. Both conditions are
also essential for the mode to be clearly defined.



Chapter 5

Demonstration

In order to demonstrate the effectiveness of the mode selectionmethod for the
identification of analytical devicemodels wewill present a small but representa-
tive example: the identification of the Ebers-Moll model of a bipolar transistor.
For this example the results obtained by MODES will be compared with those
obtained by a conventional least-squares (LS) method. The evaluation of these
results can only be objective if the true values of the parameters are known a
priori. If the observations are obtained from a real device, this would require
an identification method that is more accurate than the methods under con-
sideration. No such method is available—the sequential method, which was
discussed in the introduction, can at best match the accuracy of MODES. Al-
ternatively, the observations can be obtained by simulating a device, but using a
device model for this simulation that is more accurate and has a wider validity
domain than the device model that is to be identified. In this case, the true
parameters are those used in the simulation, provided that these parameters
play the same role in both models, i.e. have the same physical interpretation.
For bipolar transistors this last condition is easily satisfied, as we have at our
disposal a whole series of models of gradually increasing sophistication [2, 40].
Moreover, because the behaviour of bipolar transistors is strongly non-linear,
their models are a demanding test for the robustness of our implementation of
MODES.

5.1 Themodel

The simplestmodel for theDC (direct current) behaviour of a bipolar transistor
that is used in circuit design is the Ebers-Moll (EM) model [2]. For the normal
region of operation of the transistor the EM model is given by the following

72
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system of non-linear equations

Ic = IS exp(Vbe/VT )

Ib = Ic/βF
(5.1)

where Vbe is the base-emitter voltage, Ic and Ib are the collector and base cur-
rents respectively, and IS , VT and βF are the model parameters.

The extent of the validity domain of the EM model is limited by several sim-
plifying assumptions. The main assumption is that the forward current gain
Ic/Ib is constant over the whole normal region, and equal to βF . Although
this assumption often holds over several current decades, especially for mod-
ern integrated transistors, the EM model will always fail for both low and high
terminal currents. It is further assumed that the base-collector voltage Vbc does
not affect the behaviour of the transistor as long as the base-collector junction
remains reverse biased, which means that the base-width modulation effect [2]
is ignored. Nevertheless, the model given by (5.1) is often sufficiently accurate
over a large enough section of the normal operating region of a bipolar transis-
tor for applications such as the design of linear amplifiers [22], where it serves
as the DC model of the “ideal” transistor.

To some readers it may be surprising to find VT in the list of model parameters.
The thermal voltage VT is related to the absolute temperature T (in degrees
Kelvin) according to the well known formula VT = (kT )/q, where q denotes
the unit of electronic charge and k the Boltzmann constant. Hence, the value
of VT could be obtained by measuring the (internal) temperature of the de-
vice. However, as the behaviour of the device is very sensitive to changes in
temperature, this measurement would have to be extremely accurate. Even a
small measuring error in T would cause the EM model to be invalid for all ob-
servations. We have therefore chosen to extract VT from the observed DC
behaviour, together with IS and βF .

5.2 The data

A transistor model that is far more accurate than the EM model is the well-
known Gummel-Poon (GP) model. Its model equations can be found in nu-
merous publications [2, 21, 41], and are implemented in several circuit simu-
lation programs. The GP model corrects many of the omissions of the EM
model, which results in a significant extension of the validity domain. Most
notably, the GP model improves the representation of the device in the low-
current and high-current regions by incorporating the non-ideal components
of the base current (adding the GP model parameters C2 and nEL), and the
high-level injection effect (the parameter IK ). As a consequence, the current
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gain of the transistor model is no longer constant, but varies with Vbe. Also
included are the transistor’s ohmic resistances from its active region to its base
and emitter terminals (the parameters rb and re, respectively), which reduce the
effective value of Vbe. These resistances tend to linearize the exponential Ic and
Ib versus Vbe characteristics of the transistor in the high-current region. (As we
are modelling the transistor in its normal region of operation, we decided not
to include the collector resistance, which only affects the DC behaviour of the
transistor in the saturation region.)

The GPmodel accounts for the base-width modulation effect by redefining the
EMmodel parameters IS and βF (which were defined for a fixed base width [2]).
The EM parameters and GP parameters of the same name1 are only equivalent
if Vbc = 0. Hence, in order to regain the specified values of the GP model
parameters, the EM model must be identified using observational data that is
obtained for Vbc = 0.

Parameter Value
IS 10.00 fA
VT 25.50 mV
βF 250.0

C2 0.02
nEL 1.6
IK 0.2 A
rb 50 Ω
re 0.1 Ω

Table 5.1: The values of the Gummel-Poon model parameters.

The DC behaviour of an npn transistor has been simulated with the SPICE
circuit-simulation program [42], which contains the GP model. Table 5.1 lists
the values of theGPmodel parameters that were used in this simulation. These
parameter values are typical for a modern low-power transistor. The value of
Vbe was varied in steps of 0.01V from 0V up to 1.0V, while Vbc was kept at 0V.
Figure 5.1 shows the “observed” device behaviour, which is represented in the
form of a Gummel plot. We refrain frommarking the individual data points be-
cause of their large number (N = 100) and regular distribution. The simulation
accuracy, which plays here the role of the observation error, is approximately
10−4 times the simulated value for all interface variables.

1In the GP model the EM model parameter IS is denoted by ISS .
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Figure 5.1: Plots of Ic and Ib versus Vbe on a logarithmic scale (for Vbc = 0).
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LS MODES
ω = 1.0 ω = 0.1 ω = 0.01

IS 30.13 fA 10.71 fA 10.27 fA 10.26 fA
VT 28.43 mV 25.61 mV 25.53 mV 25.53 mV
βF 191.2 246.9 249.3 249.6

S 0.01–1.00 V 0.32–0.71 V 0.46–0.64 V 0.53–0.61 V
N 100 40 19 9

δ2 21.7 0.93 0.093 0.0092

Table 5.2: The results of the LS and MODES identification methods.

5.3 Results

The identification of the EM model has been carried out using a conventional
LS method, and the new MODES method for several values of ω. The results
are summarized in Table 5.2. Convergence of both the LS algorithm and the
MODES algorithm was fast for most initial parameter estimates. None of the
identified parameter sets contains redundant parameters; in fact, this identifi-
cation problem is relatively well-conditioned as c does not exceed 500. The set
S of selected observations is specified in the form of a domain on the Vbe axis of
the observation space. The LS parameters as well as the MODES parameters
have been calculated using the least-distance residuals that were introduced in
Section 4.1. The accuracy metric was set to 1% of the observed value for all
interface variables (on a linear scale), so that the dispersion δ2 is expressed in
per cents RMS.

We also experimented with device-simulation residuals, taking Vbe as the inde-
pendent variable. On the whole this had an adverse effect on the efficiency and
reliability of the identification process. Depending on the initial estimates of
the parameters, the RGN algorithm either converged to a somewhat different
solution with a significantly reduced convergence speed, or failed to converge
to a meaningful solution at all. This demonstrates the superiority of the least-
distance residuals for strongly non-linear device models.

Figure 5.2 illustrates the asymptotic character of the EM model that has been
identified by MODES (for ω = 0.01). The device behaviour predicted by the
identified EMmodel, represented by the solid lines, is superimposed on the ob-
served device curves, represented by the dotted lines. On the logarithmic scale
of the Gummel plot the EM model always produces a pair of parallel straight
lines. MODES has correctly identified the segment of the graph where the de-
vice curves are straight and parallel too. Within this region the identified EM
model coincides with the device curves (i.e. the GP model), while outside this
region the EM model and the device curves gradually diverge.
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Figure 5.2: The device behaviour predicted by the identified EM model super-
imposed on the actual device behaviour.
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Figure 5.3: The plot of the current gain Ic/Ib versus Vbe.

When we look at the results of MODES in Table 5.2 we find that the accuracy
of the parameter estimates gradually increases for decreasing values of ω. The
high accuracy that is finally attained is in stark contrast to the inaccuracy of the
LS method. The obvious cause of this discrepancy is the limited extent of the
validity domain of the EM model. For instance, the EM model assumes that
the current gain is constant over the whole domain space, an assumption that
is abandoned by the GP model. The actual current gain is shown in Figure 5.3.
As expected, the current gain varies with Vbe. The dotted lines of constant
current gain represent the identified EM model for both the LS method and
MODES (for ω = 0.01). The LS method clearly opts for an average value
for βF , spreading the modelling error evenly over all observations. MODES
focuses instead on the region where the curve is flat, and the constant current-
gain hypothesis of the EM model is valid. The bounds of the selected subsets
S for the different values of ω are indicated in Figure 5.3. For the observations
in the final subset (ω = 0.01) the variation in current gain is less than 0.1%.

Wemay conclude that for the present exampleMODES yields a far more accu-
rate estimate of the parameter set of an analytical model than the LS method.
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Even a sequential identification method, such as the one described in [2], could
not improve on the result of MODES. However, as the GP model can never
be completely reduced to the EMmodel, not even in the identified validity do-
main of the EM model, the accuracy of the parameters identified by MODES
is ultimately limited. In the next chapter we will show that this limit is propor-
tional to the final value of the dispersion δ2, and hence to the value of ω. For
the present example a further reduction of ω is not feasible. A more accurate
parameter set can only be obtained by identifying a more accurate model, such
as the GP model. In this case, the identification of the GP model obviously
yielded the correct parameters.



Chapter 6

Discussion andConclusions

The main objective of the research work presented in this thesis has been
the design and implementation of a method for the identification of analyti-
cal device models. This method should combine the flexibility of a data-fitting
method with the reliability of a sequential method. In this final chapter we will
assess the mode selection method (MODES) with respect to this aim.

First and foremost, the identified model must comply with the uniqueness con-
dition that was put forward in Section 2.3.3. It is therefore not sufficient to
simply present the computed values of the model parameters. The consistency
of these values must be determined as well. Another point still on the agenda
is our claim that not only the parameters but also the model validity domain
can be extracted from the observed device behaviour. Up to now, we have not
made this process explicit. This omission will be corrected in this chapter.

We will also discuss the quality of the implementation of the MODES algo-
rithm that was presented in Chapter 4. Many aspects of the reliability and
efficiency of the algorithm were already discussed in that chapter. Here, we
will compare the characteristics of our approach with those applied in other
data-fitting methods.

6.1 Themodel parameters

The quality of the identified model is usually discussed in terms of the accu-
racy of the parameter values, where accuracy is then defined as conformity
with true value. However, the true values of the parameters are not known,
and as we are dealing with approximate models, nor are they even defined. We
therefore revert to the pragmatic approach to modelling that was proposed in
Chapter 2, and investigate if there is a one-to-one correspondence between the
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model representation in the observation space and the model representation in
the parameter space. We will investigate two aspects of this correspondence:
the identifiability of the model and the consistency1 of the identified param-
eters. The identifiability of the model is related to the problem of redundant
parameters, and the uniqueness of the identified model in the parameter space
for the given set of observations. The consistency of the identified parameters
is related to their dependence on the experimental conditions, i.e. the repro-
ducibility of the results for alternate data sets.

6.1.1 Identifiability

Each observation in the mode set S∗ contributes some information about the
possible values of the parameters. Together these observations should be able
to discriminate between different members of the set of modelsM. However,
it happens quite often that not enough observational data is available to differ-
entiate between the members of a subset of M, in which case the identified
model will not be unique. Instead of a single point in the parameter space we
will have identified a subspace of the parameter space. There are two possible
causes for this undesirable phenomenon. Firstly, there is always the danger of
over-parameterization: using a model that is unnecessarily complex for describ-
ing the device behaviour in the domain of interest. For example, themodel may
describe a physical effect that does not take place in the actual device under the
given experimental conditions. Although the associated model parameters will
sometimes take on limiting values, more often this will give rise to degenerate
directions in the parameter space. However, suitable values of these parameters
could be determined by supplying additional observational data, for instance by
extending the range of the experiments. Therefore, these parameters are only
redundant in a practical sense. If, on the other hand, themodel contains param-
eters that cannot be identified for any amount of observational data, then these
parameters are mathematically redundant. Mathematical redundancy should
be considered a fault in the model specification. In both cases, the redundant
parameters should be separated, and subsequently eliminated from the model
specification to obtain what is sometimes called a parsimonious model [43].

To identify the redundancies in the parameter set we will explore the objective
function C2 in the neighbourhood of the solution p̄∗. For small changes in the
parameters around p̄∗ the quadratic approximation (4.24) will hold. Assuming
that the gradient ḡ is zero, or at least very small, the sensitivity of the objective
function to small changes in p̄ will be governed by the Hessian matrixH (eval-
uated at p̄∗). For the increase in the value of C2 for a small change in the value
of the parameter vector δp̄ we can write

δC2 = C2(p̄∗ + δp̄)− C2(p̄∗) = 1
2δp̄

tHδp̄

1We use the term “consistency” without any probabilistic overtones.
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Using the Gauss-Newton approximation of the Hessian matrix we obtain

δC2 = δp̄t(AtA)δp̄ = (Btδp̄)tD2(Btδp̄) =

np∑
i=1

di
2 (b̄i · δp̄)2 (6.1)

Now consider the convergence criterion of the minimization algorithm (4.38).
It specifies that the true minimum point of C2, which will be denoted by p̄∗∗,
is surrounded by a domain in the parameter space of which any member will
be accepted by the algorithm as the solution of the minimization process. This
domain will be referred to as the convergence region of theminimization problem.
If we assume that the convergence region is small, and that the Hessian matrix
of the objective function does not vary significantly over this region, then the
convergence region can be defined by the equation

δC2 ≤ tolC

where tolC = tolR C2(p̄∗)+tolAN is the tolerance onminimum value of C2 (see
Section 4.2.8). This is the equation of an np-dimensional ellipsoid centered at
p̄∗∗. However, because the convergence region provides an upper bound on the
difference p̄∗− p̄∗∗, its extent is also a measure for the precision of the accepted
solution p̄∗.

It follows from equation (6.1) that the principal axes of the ellipsoid are parallel
to the singular vectors b̄i, and that the lengths of the semi-axes are equal to√
tolC/di. For a well-conditioned model the singular values di will all be of the

same order of magnitude. A singular value that is relatively small may therefore
imply a redundant parameter. One criterion for the acceptable size of a singular
value was already introduced in Section 4.2.4

di ≥
dmax

cmax
(6.2)

where cmax is the maximum acceptable condition number of the sensitivity ma-
trixA. The directions of the singular vectors b̄i belonging to the singular values
di that fail (6.2) are classified as degenerate. Degenerate directions indicate
which linear combinations of the parameters have no significant influence on
the value of the objective function. As their singular values di are, strictly speak-
ing, unknown (no significant digits) and may as well be zero, the occurrence of
any degenerate directions in the solution means that the identified parameters
are not unique. Instead, the solution p̄∗ is an arbitrary point in the subspace
of the parameter space that is spanned by the degenerate directions (which are
orthogonal). For each degenerate direction one of the parameters involved in
these directions must be declared redundant. Only when all redundant param-
eters are eliminated from the model, will the remaining parameters take on
definite values.
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The bound on the condition number of the problem provides a relative lower
bound on the singular values di. It is also possible to specify an absolute lower
bound. Note that the sensitivities (6.1) were calculated for the scaled parameters
(see Section 4.2.5), so the absolute tolerance on the values of the elements of p̄∗
must be smaller than unity to be significant, i.e. reduce the initial uncertainty
specified by the bounds on the parameters. This means that the lengths of the
semi-axes of the convergence ellipsoid should be less than one, which implies

di ≥
√
tolC (6.3)

The directions of the singular vectors belonging to singular values that fail this
criterion should also be classified as degenerate and treated accordingly. Elimi-
nating these additional parameters will increase the reliability of the identified
location in the parameter space, at the cost of only a negligible increase in the
value of the dispersion.

Model parameters that are associated with singular values di that fail either (6.2)
or (6.3) cannot be identified. As such, the redundancy criteria define the sensi-
tivity threshold of the identification procedure. This limit depends both on the
problem formulation and on the implementation of the identification method.
The (true) value of dmax, as well as C2(p̄∗) andN , are completely determined by
the constituents of the identification problem: the model constraints, the set
of observations X , the local accuracy metric, and the scaling of the parameters.
Whereas the maximum condition number cmax and the convergence criterion
tolC , through its components tolR and tolA, are implementation dependent;
both account for the limited accuracy with which the elements of the sensi-
tivity matrix A and the residual vector r̄ can be calculated. As a consequence,
the sensitivity threshold can serve as an objective measure of the quality of the
implementation.

6.1.2 Consistency

It should not be forgotten that the identified model is, in the first place, a de-
scription of the available set of observations X . The model parameters will
thus depend on the experimental conditions such as the number of observa-
tions, the range of the observations, and the distribution of the observations
over that range. Therefore, one must determine the ability of the identified
model to predict the behaviour of the device under experiments different from
those under which the model was identified. Vice versa, one should try alter-
nate data sets for the identification of the model and check the consistency of
its parameters.

Obviously, it is neither possible nor necessary to try all conceivable data sets. As
we are dealing with a real device, the choice in experimental conditions will be
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severely limited by practical constraints. It therefore suffices to consider alter-
nate data sets that are similar to the given setX . With this restriction,MODES
may be expected to select out of each alternate data set a mode set that is, with
respect to its dispersion and range, comparable to the identified mode set S∗.
Only the number of observations in the selected subsetN and their distribution
over the selected range will differ. The effect of variations in the experimental
conditions on the identified parameters can therefore be simulated by deter-
mining the location of—systematically or randomly chosen—subsets of S∗. As
the location of each subset of S∗ will again be a point in the identification space
PS∗ , the result of this simulation will give an impression of the extent of the
identification space.

Having established a link between the consistency of the identified parameters
and the extent of identification space PS∗ , we proceed by formulating a practi-
cal measure of this extent. The simulation approach proposed in the preceding
paragraph is not particularly practical because it requires an exhaustive search
of a substantial section of the selection space, a method we rejected earlier be-
cause of its excessive use of computing time. Moreover, the maximum spread
of the observational constraints in the parameter space is an overly pessimistic
estimate of the consistency of the parameters, as it characterizes the ensemble
by its most deviant members. Although such data sets are theoretically possi-
ble, they are not very probable, especially for larger N .

Ameasure of the extent of the identification space that is readily available is the
dispersion δ2 of mode set S∗. However, the dispersion δ2 has been formulated
so that its value is independent of the scaling of the parameters. Hence, to
represent this measure in the parameter space it has to be complemented with
scaling information. One possible source of scaling information that comes
to mind is the matrix (AtA), which expresses the sensitivity of the objective
function to changes in the parameters, though it is not immediately obvious
how this scaling should be applied to δ2.

Suppose that the dispersion is zero, so all observations in S∗ agree perfectly
on a single and unique parameter set. The consistency of the location p̄∗ is
then guaranteed. Indeed, this parameter set can, for all intents and purposes,
be regarded as the true parameter set. If this true parameter set is modified by
the addition of a small error vector δp̄, equation (6.1) can be used to predict the
ensuing value of the objective function, and thus of δ2. Hence, with respect to
the value of the dispersion, the identified model with δ2 ̸= 0 is equivalent to
a hypothetical true model with δ2 = 0 that has the accuracy of its parameters
limited by the constraint √√√√√ 1

N

n∗
p∑

i=1

di
2(b̄i · δp̄)2 = δ2 (6.4)
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where n∗
p represents the number of parameters that are not redundant in the

final solution of MODES. This equation provides a link between the inaccu-
racy of the model in the observation space and the tolerance on the identified
parameter set. This is what we meant when we stated in Section 3.4.2 that the
dispersion δ2 is a measure of the accuracy of the mean as an estimate of the
mode.

The ellipsoid in the parameter space described by equation (6.4) provides an
upper bound (albeit a crude one) on the spread of the bulk of the observational
data in S∗. More specifically, the contour of all δp̄ that satisfy equation (6.4)
can be interpreted as the standard deviation of the observational data in the pa-
rameter space. We admit that we are stretching the term, nevertheless this
interpretation of the dispersion measure δ2 is consistent with our earlier inter-
pretation of the minimum point of the least-squares criterion as the mean.

To find the tolerances on the individual parameters, the ellipsoid (6.4) must be
projected on the co-ordinate axes of the parameter space [32]. We thus obtain
for the values of the parameters

pk = p∗k ± δ2

√√√√√N
n∗
p∑

i=1

(
Bki

di

)2

(6.5)

This expression again demonstrates the necessity of eliminating the redundant
parameters, as one small di will spoil the consistency of all parameters for which
Bki ̸= 0. Note, however, that the validity of (6.4) and (6.5) ultimately depends
on the accuracy of the approximation (6.1), which assumes that both δp̄ and δ2
are sufficiently small.

The volume of the ellipsoid described by equation (6.4) is proportional to δ2
and to the determinant of the reduced inverse of D, which we define as

|D−1
r | =

n∗
p∏

i=1

1

di

Both δ2 and |D−1
r | should be small for the identified model to be consistent.

Although the MODES algorithm gradually reduces δ2, the removal of an ob-
servation from the selected subset S will usually give rise to an increase in the
value of |D−1

r |. However, it was found that as long as PS is inhomogeneous
and still contains a distinct cluster, the consistency of the n∗

p dominant param-
eters will increase for each selection step. This is compatible with our earlier
statement that the MODES algorithm gradually reduces the extent of PS , and
with it the indeterminacy in the location of the mode (see Section 3.4.4). Con-
sequently, the final mode estimate of the MODES algorithm will be a far more
consistent parameter set than the initial mode estimate: the mean parameter
set.
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We will end this section with a note of caution. It has already been stressed
that consistency should not be mistaken for accuracy. Even when the disper-
sion δ2 can be reduced to zero (while the value of |D−1

r | remains finite), and the
consistency of the identified parameters is perfect, the identified parameter
set p̄∗ need not be equal to the true parameter set of the device D. Remem-
ber that the identified model does not describe the behaviour of the device D,
but that of the whole observable system O (see Section 3.1.1). Therefore, the
whole identification space might be translated due to the observation errors ēi
(especially their systematic component is often overlooked). The observation
errors will in the end limit the accuracy of the parameter values determined by
any identification method, including MODES.

6.2 Themodel validity domain

The concept of model validity that has been used throughout the preceding
chapters was based on the modelling criterion of Section 2.1. This criterion,
however, only applies to the device behaviour that has actually been observed:
the set of observations X . The discrete nature of the observations implies that
model validation is not possible in any global sense [14]. While the validity
domain of a model is a subspace, a continuum, the observations can at best
provide information about points in that space. Since these are totally different
concepts—a line is not an infinite number of points—simply increasing the
number of observations will not help. Although large N will generally inspire
more confidence in the identified model, nothing is proven. There always is an
infinite number of non-equivalent models ( ̸∈ M) that would be valid for any
finite set of observations. The correctness of the model hypothesis, at least
for a limited domain, must therefore remain a presupposition. However, if
we accept this fact, we can proceed by determining and describing the validity
domain of the model hypothesis.

6.2.1 Interpolation

We start by reintroducing the independent and dependent interface variables
ū and ȳ. For convenience, we will choose the same division as was used for the
experiments to obtain the observations X (see Section 3.1.1). The observable
system O implements a mapping from the domain U defined by the observed
values of the independent variables, to the range Y defined by the observed
values of the dependent variables. As the observed values of the independent
interface variables are typically controlled by the experiment, each experiment
can be specified by a point ū ∈ U . For any experiment, that is, for all points in
the domain space, the residual can be evaluated using the identified model pa-
rameters. In theory, the validity domain of the identified model can be defined
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as the closed set in U of all experiments that satisfy the local validity criterion
ϵ(ū) ≤ 1. Under these experimental conditions the model is a valid represen-
tation of the observable system O.

In practice, the value of ϵ(ū) is only known for the discrete set of experiments
given by X . The validity domain divides the set X into the disjoint subsets V
and V . The data points in V must now be extended into a continuous domain in
U . The obvious approach is to use interpolation. As the validity domain will, in
general, not be convex or even connected [44], this interpolation must be local,
i.e. the interpolation scheme should only use “neighbouring” data points. In the
one-dimensional case (nu = 1) an adequate interpolation scheme is easily de-
fined because of the natural ordering of the data points. However, for nu ≥ 2
an interpolation scheme cannot be defined without first ordering the domain
space by organizing the data points in a regular structure. Here, we will discuss
the case where the domain space U is discretized using an nu-dimensional rect-
angular mesh, and where the data points X are located at the vertices of this
mesh. This ordering of the data points allows a compact specification of the
experimental procedure and a compact representation of the resulting data set,
which makes it the standard measuring strategy.

Now consider the following interpolation scheme: a mesh cell belongs to the
validity domain of the model if all its 2nu vertices are elements of the valid set
V . The basic assumption is that the residual over the mesh cell is bounded
from above by the largest residual at its vertices. Provided that the residual
is dominated by the modelling error and the systematic component of the ob-
servation error, the mesh can always be chosen fine enough for this regularity
condition on the residual to be satisfied. By applying this interpolation rule
to all the cells in U , we obtain the subspace VC ⊂ U , or the complemented
valid set, as an estimate of the true validity domain of the model. The valid-
ity domain of the model is thus approximated by a large number of, possibly
connected, nu-dimensional rectangular blocks. This process is illustrated for a
two-dimensional example in Figure 6.1, where the true validity domain of the
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Figure 6.1: The validity domain estimate VC .

model is bounded by the contour, and VC is indicated by the shaded area.

Interpolation tends to underestimate the extent of the validity domain by a
fraction of a mesh cell at the boundaries of the domain. Hence, the accuracy of
VC as an approximation of the validity domain is first of all determined by the
spacing of the mesh. However, the accuracy cannot be increased without limit
by choosing themesh arbitrarily fine. A fundamental limit is again posed by the
accuracy of the model itself. In the observation space the model curve does not
pass through the observations x̄i ∈ V , but instead passes through the points x̄∗i ,
i.e. the points in themodel subspace that are closest to the observations x̄i with
respect to the specified accuracymetrics (see Section 4.1.2). These points span a
subsection of themodel curve, which, when projected on the domain space, will
not completely coincide with VC . The discrepancy between the two domains
is bounded by the extent of the projected validity regions of the observations.
However, as the validity regions extend symmetrically around the observations,
the domain VC may not only underestimate, but also overestimate the extent
of the validity domain by this amount. The projected validity regions of the
observations that are located at the boundary of VC determine the lower bound
for the accuracy of this boundary.
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6.3 The implementation

The quality of our implementation of the MODES algorithm must be assessed
according to the following criteria: reliability, sensitivity and efficiency—in or-
der of priority. For those stages of the algorithm for which there are alterna-
tives, we will do so by comparing our implementation with a more conventional
choice. However, this comparison is complicated by the lack of an adequate
set of benchmark problems. The reliability as well as the sensitivity of the
algorithms are mainly implementation dependent, and can therefore be evalu-
ated without referring to specific identification problems. In contrast, we find
that the computing time needed to solve an identification problem is to a large
extent determined by external factors, such as the formulation of the model
constraints, or the accuracy of the initial estimates of the model parameters.
Hence, we will mostly confine ourselves to a qualitative comparison of the dif-
ferent algorithms.

6.3.1 Minimizing the objective function

The MODES algorithm requires the solution of a sequence of least-squares
data-fitting problems. These problems could have been solved using a standard
minimization technique [30]. Instead, we have decided to develop our own al-
gorithm: the reduced Gauss-Newton (RGN) method. This was done mainly
to increase the reliability of the identification process, although efficiency and
accuracy considerations also played a significant role. In this section we will
compare the RGNmethod with its main contender: the Levenberg-Marquardt
(LM) method. According to its advocates, the LMmethod is not only fully reli-
able, but also the most efficient Newton method for solving least-squares prob-
lems. As a result, the LMmethod has virtually become the standard minimiza-
tion method for data-fitting applications, both in literature and in commercial
implementations [7, 9, 10, 11, 32].

The LM method is based on the observation that when the ill-conditioning of
the sensitivity matrix A causes the original Gauss-Newton method to fail, the
search direction is often almost orthogonal to the direction of the negative gra-
dient −ḡ. In order to counter this effect, the LM method modifies the normal
equations (4.30) to (

AtA+ γI
)
∆p̄ = −Atr̄ (6.6)

In some implementations the identity matrix in this expression is replaced by
a non-singular diagonal scaling matrix. For increasing γ the search direction is
gradually rotated toward the direction of the negative gradient, while the con-
dition of the problem is gradually improved (for large γ the condition number
of the left-hand side matrix approaches unity). Hence, for large enough γ the
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modified normal equations (6.6) can be solved accurately, and the search direc-
tion will be a reliable descent direction. Because an increase in the value of γ
also reduces the length of the correction step defined by (6.6), the Marquardt
parameter γ can also be used for the purpose of achieving global convergence;
there will always exist a finite value for γ so that the LM correction step will
yield a reduction in the value of the objective function. In this way, the LM
method avoids the directional search for the optimum step length α (see Sec-
tion 4.2.6), however, only by requiring a similar algorithm for computing γ. Im-
plementations of the LM method differ mainly in the heuristics that are used
to determine an adequate value for γ.

As the LM method can solve ill-conditioned problems without actually having
to determine the degenerate directions, which would require the singular-value
decomposition of A, the predominant reason for the use of the LM method
instead of a RGNmethod is its supposedly higher efficiency. One should, how-
ever, not mistake the efficiency of a single step in an algorithm, here the calcula-
tion of∆p̄ fromA and r̄, for the efficiency of the whole algorithm. The number
of iterations of the algorithm, or more in particular the number of evaluations
of the objective function, that are needed for convergence to the solution is an
equally decisive factor determining the computational efficiency of the mini-
mization procedure. Extensive testing of both methods has shown that in this
respect the RGNmethod will often outperform the LMmethod. More specifi-
cally, we have found that for problems which are ill-conditioned in the solution
p̄∗ (i.e. for models with redundant parameters) the RGN method exhibits far
better convergence behaviour in the neighbourhood of the solution than the
LM method. A low convergence rate for the LM method has been reported
by several authors [8, 30, 37]. To illustrate this problem we will write the LM
correction step as a vector sum of the right singular vectors of A:

∆p̄ = −
np∑
i=1

di (q̄i · r̄)
di

2 + γ
b̄i

If we compare this expression to (4.31) we find that the LMmethod, in order to
reduce the contribution of the components of∆p̄ that point in the degenerate
directions, also modifies the ratio between the other components, which may
spoil their accuracy. If, for instance, the model constraints are linear in x̄ and p̄,
so the Gauss-Newton approximation is exact, the LM method, in contrast to
the RGNmethod, will not reach the solution in a single step when γ > 0. The
possible super-linear rate of convergence of the original Gauss-Newtonmethod
and the RGNmethod can therefore only be matched by the LMmethod when
γ = 0 in the neighbourhood of the solution, i.e. when there are no redundant
parameters.

The low convergence rate of the LM method would be extra problematic for
MODES. Firstly, because MODES requires a sequence of minimization prob-
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lems to be solved, each from an initial point that is already in the neighbour-
hood of the next solution. Therefore, slow convergence of the minimization
algorithm will weigh heavily on the total efficiency. Secondly, because MODES
eliminates data points and possibly whole regions of the domain space, it is very
likely that some of the parameters will become redundant. Both effects were
confirmed by experiments, where we found MODES to be less efficient when
based on the LM algorithm than when based on the RGN algorithm, which
handles ill-conditioning without degrading the convergence behaviour of the
minimization process.

In respect of the sensitivity threshold of the identification method, equation
(6.6) provides a poor computational approach to obtaining the LM correction
step. As it is based on the normal equations, it involves the inversion of the
matrix (AtA), which has a condition number of c2, the square of the condi-
tion number of A. Hence, if the matrix A is ill-conditioned then the matrix
(AtA) will be considerably more so. Consequently, implementations of the
LM method that calculate the correction step ∆p̄ by solving (6.6) are inher-
ently unsuited to solve ill-conditioned problems. An implementation of the
LM method could achieve the same sensitivity threshold as the RGN method
by computing the correction step using a factorization of the matrix A, for ex-
ample the Householder reduction of A to a bi-diagonal form [30] (which is an
intermediate stage in the singular-value decomposition ofA). However, this in-
creases the computational overhead considerably, removing the initial reason
for choosing the LM method.

6.3.2 Constraints in the parameter space

Some authors have chosen to introduce linear constraints in the least-squares
minimization problem [9, 10], because “the parameters tend to take on non-
physical values” [9]. However, in our case, the minimum p̄∗ is interpreted as
the location of the identification space, or as the average values of the param-
eters. Hence, a constrained minimum of the objective function is clearly not
acceptable. Moreover, the MODES algorithm which we use to obtain “physi-
cal” values for themodel parameters requires an unconstrained stationary point
of the objective function to function correctly. This is the motivation behind
our rather casual approach to the bounds on the parameters. Even when the
initial point p̄(0) lies well within the specified bounds, in a multi-dimensional
space there will always be descent paths leading to the desired minimum that
temporary violate the bounds. Hence, the bounds on the parameter values are
implemented as “weak” constraints. Theirmain purpose is to limit the length of
the correction steps in order to stay within the collecting region of the desired
minimum. For that purpose the bracketing technique described in Section 4.2.7
is very effective, efficient, and easy to implement.
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An additional reason for introducing constraints that is peculiar to the LM
method is to limit and effectively fix the values of any redundant parameters.
When the identification problem is ill-conditioned, the LM correction step
will have components of an arbitrary but often substantial length in the degen-
erate directions. Over many iterations these components can accumulate and
cause numerical problems, degrading the reliability of the identification pro-
cess. The RGN method avoids this problem by always setting the lengths of
these components to zero.

6.3.3 Calculating the residuals

The efficiency of the algorithm that is used for calculating the residuals will, to a
large extent, determine the efficiency of the whole identification method. This
is the reason why in Section 4.1.6 the tradeoff between the reliability and the
efficiency of the algorithm was slightly in favour of the latter. A tradeoff which
is acceptable because the failure of a single residual calculation (or possibly a
few) does not necessarily lead to the failure of the whole identification process.
The temporary removal of the offending observations from the data set X ,
which is easily implemented inMODES, will often allow further progress to be
made. At a later stage of the identification process, when the model subspace
has been moved closer to these observations, the removed observations can
often be reintroduced.

One aspect of the efficiency of this minimization method is its rate of conver-
gence. A comprehensive analysis, which can be found in Appendix C, shows
that the convergence rate of the proposed method is linear. This compares
unfavourably with several closely related methods, such as Wilson’s SOLVER
method [37] and the “variable metric” method developed by Powell [38]. These
methods accumulate information from successive iterations in order to con-
struct an approximation of the second derivatives of the model constraints. If
this approximation is successful, these methods will exhibit super-linear con-
vergence in the final stages of the iteration process. It is possible to extend
the present method in the same direction. However, here the asymptotic rate
of convergence of the minimization algorithm is not always the significant cri-
terion. Only when the evaluation of the model equations dominates the total
computing time—as might be the case for complex circuit models (see Ap-
pendix A)—would the lower iteration count of these methods offer a real ben-
efit. For the relatively small but highly non-linear device models that are pre-
ferred for circuit synthesis, and which form the main field of application of
MODES, experiments have shown that the gain in convergence rate does not
outweigh the extra computational complexity involved in these methods. On
the whole we found that the proposed minimization method represents a good
compromise between the amount of computation required per iteration and
the total number of iterations required for convergence.
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6.3.4 Themodel constraints

The evaluation of the model constraints forms the basis of the whole iden-
tification process. Therefore, some care should be taken when formulating
the model constraints. An awkward formulation can lead to complex topolo-
gies in the observation space and parameter space, which are difficult to search
when calculating the residuals or minimizing the objective function. Anymath-
ematically redundant parameters are best eliminated in advance. Also recall
the assumption concerning the independence of the model constraints in Sec-
tion 4.1.4. Most of the efficiency and reliability problems that occur during
identification can be traced back to neglecting this important initial stage of
the modelling exercise.

The MODES algorithm has been designed to use the system of model con-
straints fM in its linearized form:

fM(p̄, x̄) ≈ fM(p̄0, x̄0) + Jx (x̄− x̄0) + Jp (p̄− p̄0)

where the function value at the current point f(p̄0, x̄0), and the Jacobian ma-
trices Jx = ∂fM/∂x̄ and Jp = ∂fM/∂p̄ at the current point, must be supplied.
In developing the minimization algorithms we tacitly assumed that the model
constraints and their first derivatives could be evaluated with unrestricted ac-
curacy. In reality, the accuracy with which the model constraints are evaluated
is crucial to the quality of the whole identification process. First of all, the ac-
curacy of fM(p̄0, x̄0) and Jx determines the accuracy with which the residuals
ρ̄i can be calculated. The accuracy of the residual vector r̄ and the accuracy of
the sensitivity matrix A in their turn are relied upon by the RGN method to
determine the degenerate directions in the parameter space, and by the step
selection procedure (see Section 4.3.1) to single out the correct observation to
be removed from the current mode set.

According to Section 4.2.4 it is the accuracy of the calculated gradient ḡ of the
objective function C2 that determines cmax, the maximum acceptable condi-
tion number of A. From (4.21) and (4.28) we can derive that the accuracy of
ḡ depends equally on the accuracy of fM(p̄0, x̄0) and the accuracy of Jx and
Jp. Since fM is available in analytical form, its current value can, at least in
theory, be evaluated with machine accuracy. The sensitivity of the identifica-
tion method is then limited by the accuracy of the supplied derivative informa-
tion. Preferably, the accuracy with which the derivatives Jx and Jp are evalu-
ated should therefore be comparable to the accuracy with which the constraint
function itself is evaluated.

The constraint derivatives Jx and Jp can either be supplied in analytical form, or
approximated numerically by finite differences [37]. For easy implementation
of new models it is generally considered desirable to avoid the sometimes cum-
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bersome process of expressing analytically the derivatives of the model equa-
tions. However, when the accuracy of the finite difference approximation is
poor, as is often the case when the model is strongly non-linear, convergence of
the minimization methods that use this approximation cannot be guaranteed.
Inaccurate derivative information in fact nullifies the theory underlying their
iteration equations, whichmay give rise to unusable search directions. This was
found to be a major source of convergence problems and inaccurate solutions
in several conventional identification methods. Therefore, whenever possible,
analytical derivatives of the model constraints should be supplied. Analytical
derivatives, with their inherent accuracy, contribute significantly to the quality
of the identification procedure.

6.4 Conclusions

In this thesis we have presented a unified approach to the identification of an-
alytical device models. The improved theoretical understanding of the identi-
fication problem has resulted in the mode selection method (MODES), which
can replace the sequential method as the identification method of choice for
all applications where the validity of the model cannot be guaranteed a priori.

The reliability of MODES at least equals that of the sequential method, as
was demonstrated in the preceding chapter. The reliability of both these iden-
tification methods arises from the fact that they take into consideration the
limited extent of the validity domain of the analytical device model when de-
termining the model parameters. However, MODES has a sound theoretical
basis which the sequential method lacks. MODES only relies on the asymp-
totic character of the model, an assumption which is justified for most analyt-
ical device models. In contrast, the definition of a sequential method is usu-
ally a somewhat haphazard affair, involving additional model approximations
and non-linear transformations of the data, which require assumptions that are
far more precarious. Hence, a sequential method may effectively modify the
model structure and identify a model that differs from the intended model. As
MODES always works directly with the model itself, it may even surpass the
reliability of a sequential method.

MODES has all the flexibility of a data-fitting method. It can be applied with-
out any modification to analytical models of arbitrary complexity. The often
problematic linearization of the model curve, and the inaccurate estimation
of the validity domain by eye, are dispensed with. The validity domain of the
model is extracted automatically from the observed device behaviour, using a
well-defined validity criterion. Supplying the validity domain exposes and local-
izes the model’s deficiencies, showing where the model needs to be extended.
This feature makes MODES a particularly useful tool for the development of
new models and the improvement of existing models.
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MODES provides realistic consistency estimates for the identified parame-
ters. These estimates are indispensable to all applications where devices are
compared with respect to their model parameters. These applications range
from circuit synthesis to (statistical) process characterization. The sequen-
tial method does not usually provide consistency estimates, while conventional
data-fitting methods tend to base their estimates on unrealistic assumptions
about the validity of the model or the stochastic properties of the observation
errors.

The implementation of MODES presented in this thesis combines robustness
with efficiency. Compared to other data-fitting algorithms, our algorithm is
marked by its proficient handling of strongly non-linear models and its ability
to deal effectively with over-parameterized models. As these contributions can
improve the robustness of data-fitting algorithms in general, they should be of
interest to a wider audience. Finally, because MODES is based on the least-
squares method, existing least-squares parameter-extraction programs can be
readily upgraded to MODES.



Appendix A

TheModel Equations

Throughout this thesis, analytical device models are represented by a set of
equality constraints

fM(p̄, x̄) = 0̄, f ∈ IRnp × IRnx → IRnf (A.1)

where p̄ is the vector of structural parameters, and x̄ is the vector of interface
variables. However, many device models do not come in this form. In this
appendix, therefore, we will introduce a broader class of analytical model spec-
ifications, and discuss a number of methods for deriving model specifications
of the form (A.1).

Any device model (structural as well as behavioural) that deserves the epithet
“analytical” can be specified in the form of a set of ne analytical expressions

e1(p̄, x̄, ā) = 0
e2(p̄, x̄, ā) = 0

· · ·
ene(p̄, x̄, ā) = 0

(A.2)

where ā represents a vector of na additional variables, which will be referred
to as the “internal” variables as opposed to the “external” interface variables
x̄, and ne ≤ nx + na. This representation also includes the so-called circuit
models, whichmodel a device by an equivalent circuit from a small set of circuit-
theoretical primitives, such as ideal linear components, diodes, and non-linear
sources. The internal variables then represent electrical quantities associated
with the internal nodes of the equivalent circuit.

To obtain a model representation of the form (A.1) it is necessary to eliminate
thena internal variables together withna of the equations. The set of equations
(A.2) defines the internal variables as an implicit function of the parameters and
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the interface variables: ā(p̄, x̄). (Although this functionwill not be uniquewhen
the set of equations is underdetermined, i.e. ne < nx + na.) When this func-
tion is substituted in (A.2), the resulting set of equations will be dependent, and
exactly na equations can be removed from the set. Hence, the set of equations
(A.2) implicitly defines a (again not unique) set of model constraints fM, where
nf = ne − na. Since the analytical tractability of the model structure is impor-
tant to our modelling goal (recall Section 2.3.3), we would prefer ā(p̄, x̄) to be
expressed in analytical form. This is feasible for many of the popular analytical
device models. Moreover, these manipulations on the set of equations can usu-
ally be performed by one of the mathematical expert systems that are currently
available [45].

In case it is not possible to obtain ā(p̄, x̄), and hence fM, in analytical form,
we can revert to a numerical evaluation of fM. However, it is then necessary
to ensure that effectively the same non-linear transformation is used to obtain
(A.1) from (A.2) for all possible values of p̄ and x̄. When the number of internal
variables that cannot be eliminated analytically is small, this is best achieved
by defining a function ā(p̄, x̄) for the remaining variables, but now in the form
of a numerical procedure. Alternatively, when the number of internal variables
is large—for example in the case of a large circuit model—it will be more ef-
ficient to use device simulation (see Section 4.1.3) to construct a set of model
constraints. After designating nx−nf of the interface variables as independent
variables, denoted by ū, the set of ne = nf + na equations (A.2) has exactly
nf + na remaining free variables (for fixed p̄). This set of equations can then
be solved numerically, in the case of a circuit model using one of the available
circuit simulators, which allows us to determine the values of the dependent
interface variables, denoted by ȳ, as a function of the independent interface
variables: ȳ(p̄, ū). The set of model constraints can be expressed as

fM(p̄, x̄) = ȳ − ȳ(p̄, ū), where x̄ =

[
ū
ȳ

]

However, as the use of numerical techniques, such as device simulation, in the
formulation of the model constraints severely limits the analytical tractability
of the model, it is often better (in view of the modelling goal) to modify the
model equations by making some additional assumptions and approximations.
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Derivatives of the Residuals

The purpose of this appendix is to derive an expression for the partial deriva-
tives of the residuals with respect to the parameters, thereby proving the result
that was given in equation (4.27).

For p̄ = p̄(k) and x̄ = x̄∗ the following relations must hold

f(p̄, x̄) = 0̄ (B.1)
V (x̄− x̄0) = J t

xλ̄ (B.2)

where Jx is the nf × nx Jacobian matrix of partial derivatives ∂f/∂x̄. It is
further assumed that Jx is of full rank, in which case the vector of Lagrange
multipliers λ̄ is unique. Taking partial derivatives with respect to an element p
of the parameter vector p̄ of the equations (B.1) and (B.2) gives

∂pf + Jx ∂px̄ = 0̄

V ∂px̄ = J t
x ∂pλ̄+ (∂pJx)

t λ̄ (B.3)

where ∂p is a shorthand notation for the operator ∂/∂p. Equation (B.3) contains
second derivatives of the model constraints because the adjoint equation (B.2)
already contains first derivatives. Solving this set of equations for ∂pλ̄ yields

∂pλ̄ = −
(
JxV

−1J t
x

)−1 [
∂pf + JxV

−1(∂pJx)
tλ̄
]

The residual vector ρ̄ is defined as

ρ̄ =
(
D 1/2Rt

)
λ̄

where the diagonal matrix D and the orthogonal matrix R (which means that
Rt = R−1) follow from the relation

JxV
−1J t

x = RDRt =
(
D 1/2Rt

)t(
D 1/2Rt

)
(B.4)

98



Derivatives of the Residuals 99

The partial derivate of ρ̄ is given by

∂pρ̄ =
(
D 1/2Rt

)
∂pλ̄+ ∂p

(
D 1/2Rt

)
λ̄

This equation can be rewritten as

∂pρ̄ = −
(
D 1/2Rt

) (
RD−1Rt

) [
∂pf + JxV

−1(∂pJx)
t
(
D−1/2Rt

)
ρ̄
]

+ ∂p
(
D 1/2Rt

)(
D−1/2Rt

)
ρ̄

= −
(
D−1/2Rt

)
∂pf +

(
D−1/2Rt

)
Z
(
D−1/2Rt

)t
ρ̄ (B.5)

where the matrix Z is defined as

Z =

[(
D 1/2Rt

)t
∂p
(
D 1/2Rt

)
− JxV

−1(∂pJx)
t
]

To prove that the matrix Z is skew-symmetric (which means that Z = −Zt),
we use the derivative of equation (B.4)

JxV
−1(∂pJx)

t + (∂pJx)V
−1J t

x =(
D 1/2Rt

)t
∂p
(
D 1/2Rt

)
+ ∂p

(
D 1/2Rt

)t(
D 1/2Rt

)
Reordering of the terms results in[(

D 1/2Rt
)t
∂p
(
D 1/2Rt

)
− JxV

−1(∂pJx)
t
]
=

−
[
∂p
(
D 1/2Rt

)t(
D 1/2Rt

)
− (∂pJx)V

−1J t
x

]
=

−
[(

D 1/2Rt
)t
∂p
(
D 1/2Rt

)
− JxV

−1(∂pJx)
t
]t

Since the matrix Z is skew-symmetric, the matrix S which is defined as

S =
(
D−1/2Rt

)
Z
(
D−1/2Rt

)t
is also skew-symmetric. It is thus possible to reduce equation (B.5) to

∂pρ̄ = −
(
D−1/2Rt

)
∂pf + S ρ̄

where S is a skew-symmetric matrix, which is the desired result.
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Convergence of the Residual
Calculation

In this appendix we will determine the rate of convergence of the method for
constrained minimization that was developed in Section 4.1.5.

As point of departure we take the iteration equations of the algorithm, the
primal and adjoint equations (4.10) and (4.11), and write them in the form of a
block-matrix equation that is better suited to the analysis that will follow. The
relation between two consecutive iterations of the algorithm can be expressed
as [

−V J t
x

Jx 0

] [
x̄(k+1)

λ̄(k)

]
=

[
−V x̄0

−f(x̄(k)) + Jxx̄
(k)

]

From the iteration equation of the algorithm we can derive the following ex-
pression for the accuracy—the deviation from the solution (x̄∗, λ̄∗)—of the
(k + 1)st iterate[

−V J t
x

Jx 0

] [
(x̄(k+1) − x̄∗)

(λ̄(k) − λ̄∗)

]
=

[
V (x̄∗ − x̄0)− J t

xλ̄
∗

−f(x̄(k)) + Jx(x̄
(k) − x̄∗)

]
(C.1)

To determine the convergence rate of the algorithm, we must express the right-
hand side of (C.1) in terms of the accuracy of the former iterate and deriva-
tives of the model constraints at the solution. For this purpose, we expand
the Jacobian matrix Jx in a second-order Taylor series about the solution. The
rows of Jx are the gradients of the individual model constraints∇fi, hence for
i = 1, . . . , nf

∇fi(x̄
(k)) = ∇fi(x̄

∗) +∇2fi(x̄
∗)(x̄(k) − x̄∗) +O(∥x̄(k) − x̄∗∥2)
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Substitution in the upper part of the right-hand side of (C.1) yields

V (x̄∗ − x̄0)− J t
xλ̄

∗ = V (x̄∗ − x̄0)−
nf∑
i=1

λ∗
i∇fi(x̄

(k))

=

[
V (x̄∗ − x̄0)−

nf∑
i=1

λ∗
i∇fi(x̄

∗)

]

+

nf∑
i=1

λ∗
i∇2fi(x̄

∗)(x̄(k) − x̄∗) +O(∥x̄(k) − x̄∗∥2)

= O(∥x̄(k) − x̄∗∥)

because the term between the square brackets is the adjoint equation in the
solution, and thus equals zero.

A second-order Taylor series expansion of the model constraints f , but now
about x̄(k), yields

f(x̄∗) = f(x̄(k)) + Jx(x̄
∗ − x̄(k)) +O(∥x̄∗ − x̄(k)∥2)

As f(x̄∗) = 0̄, the terms can be reordered to obtain an expression for the lower
part of the right-hand side of (C.1)

−f(x̄(k)) + Jx(x̄
(k) − x̄∗) = O(∥x̄k − x̄∗∥2)

Collecting the results, we finally arrive at the following expression for the error
equation of the algorithm:[

−V J t
x

Jx 0

] [
(x̄(k+1) − x̄∗)

(λ̄(k) − λ̄∗)

]
=

[
O(∥x̄(k) − x̄∗∥)
O(∥x̄(k) − x̄∗∥2)

]
(C.2)

=

[ ∑nf

i=1 λ
∗
i∇2fi(x̄

∗)(x̄(k) − x̄∗) +O(∥x̄(k) − x̄∗∥2)
O(∥x̄(k) − x̄∗∥2)

]
(C.3)

Equation (C.2) shows that if the algorithm converges, it does so only linearly.
The more detailed expression (C.3) also shows that the size of the first-order
term, and consequently the convergence factor of the algorithm, is determined
by the product of the curvature of the model constraints ∇2fi, and the size of
the Lagrangemultipliers at the solution λ∗

i . Hence, when themodel constraints
are almost linear, or when the observation x̄0 is close to the model curve so λ̄∗

is small, the convergence factor will be small and the rate of convergence of the
algorithm can still be high in the neighbourhood of the solution. Both effects
were confirmed in experiments.
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